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Slow cooling of hot polarons in halide perovskite solar cells
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Halide perovskites show unusual thermalisation kinetics for above bandgap photo-excitation. We
explain this as a consequence of excess energy being deposited into discrete large polaron states.
The cross-over between low-fluence and high-fluence ‘phonon bottleneck’ cooling is due to a Mott
transition where the polarons overlap (n > 10'8 cm_3) and the phonon sub-populations are shared.
We calculate the initial rate of cooling (thermalisation) from the scattering time in the Fréhlich
polaron model to be 78 meVps~! for CH3NH3Pbls. This rapid initial thermalisation involves heat
transfer into optical phonon modes coupled by a polar dielectric interaction. Further cooling to
equilibrium over hundreds of picoseconds is limited by the ultra-low thermal conductivity of the

perovskite lattice.

A key challenge in the device physics of photovoltaic
materials is understanding where the above bandgap pho-
ton energy goes and how to control it. Thermalisation of
‘hot’ (above bandgap) carriers is normally a fast (fs) pro-
cess in pure crystals. It is a loss process in photovoltaics
and is a major factor underpinning the Shockley-Queisser
limit for power conversion efficiencies[I]. To avoid this
loss pathway, hypothetical device architectures have been
devised by which these hot carriers can be extracted[2].
A fundamental material limit is how far the carriers move
in the active photovoltaic layer before cooling to thermal
equilibrium.

There is a growing literature on the kinetics of car-
rier cooling in halide perovskites[3H9]. The behaviour
has been linked to a ‘phonon bottleneck’ at high influ-
ence, and more generally to the formation and stabil-
ity of polaronic charge carriers. In addition, it has been
established that halide perovskites exhibit low thermal
conductivity, which could be affecting the photophysi-
cal processes. Thermal conduction in methylammonium
lead iodide (CH3NH3PbI3 or MAPI) is almost as low as a
solid-state material can be—the material forms a phonon
glass[10, [I1].

In this Letter, we consider the microscopic thermal
processes in halide perovskite solar cells underpinning
the formation, thermalisation, and cooling of charge car-
riers photogenerated from above bandgap illumination.
We describe how the formation of hot electron and hole
charge carriers in the form of Frohlich polarons res-
onates with a sub-population of phonon states (thermali-
sation of 78 meVps~1), which then cool slowly (over hun-
dreds of ps) due to short phonon lifetimes. We further
show that CsPbls has a larger thermal conductivity than
CH3NH3Pbl3, which accelerates the kinetics of hot car-
rier cooling.
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FIG. 1. The physical processes involved during the photo-
generation of charge carriers which results from above
bandgap illumination in a halide perovskite: (i) exciton gen-
eration; (ii) exciton dissociation, hot polaron formation and
thermalization; (iii) hot phonon relaxation to the band edge
limited by the lattice thermal conductivity. Note that there is
a distinction between thermalisation, which we define as the
equilibration with local phonon modes, and cooling, which is
the equilibration with the extended bulk solid. Together, they
form the hot carrier relaxation process.

Measurements and models of carrier cooling.
Relative to the light intensity generated by a laboratory
laser, the sun is dim. The charge density maintained
by steady-state generation, recombination and extraction
of photogenerated charges under solar irradiation is ex-
pected to be around 10'® cm=3[12]. Careful control of
signal-to-noise is required to reach this low fluence regime
in transient studies. The photophysics at higher fluence
can be very different to an operating device under sun-
light.

As well as fluence, there is flexibility in what ex-


mailto:jarvist.frost@imperial.ac.uk
mailto:a.walsh@imperial.ac.uk

citation to pump at. In a two-band effective mass
model, excitation beyond the bandgap proportionally re-
sults in greater energy electrons and holes. However,
lead halide perovskites have multiple optically accessi-
ble bands. Spin-orbit coupling splits the Pb 6p conduc-
tion band into levels calculated (by quasi-particle GW
theory) at +1.6eV and +3.1eV above the valence band
maximum|[I3]. These values neglect two-particle (exci-
tonic) effects, and electron-phonon renormalization. The
second transition is observed by spectroscopic ellipsom-
etry as a critical point at 2.5eV[I4]. Exciting well be-
low the experimentally observed second critical point at
2.5eV is required to generate a population of hot carriers
in the first conduction band.

The common experimental choice of 400nm (3.1eV)
excitation is problematic in terms of interpreting the
data. We estimate from the partial optical density of
states (see [14], Fig. 4c), that between 10 and 20% of
this excitation flux is going into higher conduction bands
at 3.1eV. This confuses the analysis, as a combination of
(delayed) band-to-band transitions will overlap with the
hot-carrier cooling.

There is evidence[3, [, [7] that at high fluence (n >
108 ecm~3), cooling of above-bandgap photo-generated
charges in MAPIT is slow (7 & 100 ps). This has been as-
cribed to a ‘phonon bottleneck’[15] effect. Yang et al.[7]
recently studied this high fluence cooling regime in some
detail. The existence of a phonon bottleneck even in
conventional inorganic quantum dots is controversial[16],
and requires weak coupling to the fast dissipating (speed
of sound) acoustic vibrational modes.

A recent transient-absorption microscopy study of
polycrystalline MAPI suggests ballistic transport of
the slowly-cooling carriers generated by excitation at
3.14eV[9]. Similarly, a combined transient-absorption
and time-resolved photo-luminesence study on MAPI[g]
found unusual transient behaviour when pumping at
3.1eV. They see a direct ‘cooling’, which they asso-
ciate with a large momentum transition (i.e. an optical
phonon mode) between the Brillouin-zone boundary and
zone centre. These unusual data may in part be due to
transitions involving higher conduction bands.

Zhu et al.[6] studied the bromine analogue, pumping
at modest fluence (~ 7 x 106 cm=3), ~ 700 meV above
the bandgap. No ‘hot’ emission is observed in tran-
sient photoluminescence for the inorganic cesium mate-
rial, whereas the organic-inorganic materials possess an
addition high-energy emission decaying with a time con-
stant of 160 ps.

Kawait et al.[I7] calculated carrier cooling from first-
principles via electron-phonon interactions for CsPblg
and bare Pblz  octahedra (with a homogeneous back-
ground charge to maintain charge neutrality). However,
the neglect of spin-orbit coupling to calculate the elec-
tronic structure calls the energy dissipation rate into
question, as the conduction band (Pb 6p) energy, dis-
persion and degeneracy are significantly altered. The
electron-phonon coupling was calculated assuming har-

monic vibrations, and thus may further miss the major
contribution in highly anharmonic systems such as the
halide perovskites.

All of the transient spectroscopic studies reported so
far suggest that a hot photo-excited state persists in hy-
brid halide perovskites with a characteristic cooling time
of up to 100ps. There are three dynamic processes we
need to understand: 1. The photon will first be absorbed
into a particular volume of the material (the exciton, a
transient Coulomb bound electron-hole pair). 2. The ex-
citon will then separate into hot carriers (electron and
hole polarons), which will thermalize with the local po-
laron phonon separation. 3. The polaron cloud will equi-
librate by the transfer of thermal energy to the lattice,
leading to a cooled charge carrier state. These processes
are illustrated in Figure Each of these states can be
treated at different levels of theory, from the microscopic
to the mean-field. We will discuss them first individually,
and then assess the full process.

Transient Wannier exciton formation. Whether
(three dimensional) lead iodide perovskites support an
equilibrium population of excitons (bound electron-
hole pairs) is a matter of some experimental debate.
Absorption-based measurements typically indicate the
existence of an exciton state below the bandgap[I§],
whereas there is no evidence in emission. We explain
this disagreement as being due to timescale for the mea-
surements. Absorption probes transient states, whereas
emission is sensitive to a steady state of electrons and
holes. The difference between the optical dielectric con-
stant (€5, ~ 5, response on a timescale of femtoseconds)
and the larger static dielectric constant (eg > 20, re-
sponse on a timescale of picoseconds) means that exciton
is transiently stabilised by the optical dielectric constant.

Prediction of the exciton state is a challenge for first-
principles electronic structure theory. Solution of the
Bethe-Salpeter equation (which contains the first order
contribution to electron-hole binding) is computationally
demanding, and more so to achieve convergence. The
resulting binding energy only considers the response of
electronic excitations (i.e. €). The work of Bokdam et
al.[19] gives a value for MAPI of 45meV.

An effective-mass model of Wannier excitons[20] con-
siders the photo-excited electron and hole to individu-
ally be polarons. The interaction is statically screened
Coulomb interaction of the bare charges. This forms a
hydrogenic bound state within the nearly-free-electron
environment provided by the band effective masses. Sim-
plifying to a single particle system with a reduced effec-
tive mass, this is solved exactly to give a spectrum,

Hq4 h2 k2
2h2e?n? - 2(me + my)

Here, E, (k) is the energy of state n; with k the crystallo-
graphic momentum. For the ground-state of the exciton
relative to separated charges (¢), n = 1 and k = 0 (T
point). € is the dielectric constant ; u = memy, /(me+mp)



is the reduced carrier mass. The associated exciton ra-
dius (analogous to a Bohr radius) is defined as
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Our calculations were cross-checked against CdS[21].

The short timescale (100 fs) exciton is stabilised by the
optical dielectric constant. With values (by QSGW[22])
of e = 4.5, m, = 0.12, my, = 0.15, the exciton binding en-
ergy is 44.8 meV with a Bohr radius of a,, =35.7 A. Once
the full dielectric response of the lattice occurs (e = 24.1),
the binding energy reduces to 4 meV, the exciton orbital
expands to an enormous size; the exciton has separated.
On the timescale of the atomic motion (picoseconds) giv-
ing rise to the static dielectric constant, the exciton de-
composes into separate electron and hole polarons. The
initial hot exciton is transient.

This model agrees well with a recent study[23] that
measures the exciton binding energy as 13.5meV, and
associated dephasing time (which we consider to be the
exciton separation) of 1 ps.

Large polaron formation. A polaron quasi-particle
consists of a charge carrier (electron or hole) wavefunc-
tion which has been localised in a dynamically gener-
ated potential due to the polar response of the lattice.
We recently solved a temperature-dependent Frohlich po-
laron model for halide perovskites[24]. The calculated
Frohlich polaron coupling constants o = 2.4 (electron)
and o = 2.7 (hole) fall in the intermediate coupling
regime (defined as 1 < a < 6[25]). This is because the
strong dielectric electron-phonon coupling is balanced by
the light band effective masses, resulting in a strongly
interacting large polaron. As such, the continuum (large
polaron) theory remains valid, but the effective mass is
strongly renormalised.

Defining the size of a polaron is difficult. The Feyn-
man solution of the Fréhlich Hamiltonian is a simple har-
monic oscillator of the coupled electron-phonon system.
Schultz[26] defines the Feynman polaron radius (ry) as
the standard deviation of the resulting Gaussian wave-
function (v),

p=mv® —w?)/v? 3)
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Here p is the density of the wavefunction, y is the reduced
(effective) mass of the electron and interacting phonon-
cloud, while v and w are internal polaron parameters
characterising the harmonic motion of the polaron. The
units of v and w are hw.

Feynman (Eqn. 33 in Ref. [27) provides a zero-
temperature variational problem to solve for v and w.
Assuming « is small, v = (1 + €)w, and keeping only
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FIG. 2. Temperature-dependent electron (m. = 0.12) po-

laron radius (A) calculated from a numerical solution to the
Frohlich polaron model. The horizontal (red) line reprepre-
sents the polaron radius from the common (athermal) small-a
approximation.

linear terms in €, the integral in the total energy is an-
alytic, and the variational solution can be approximated
as w = 3, v = 3+ 2a[28]. We can directly relate the
polaron radius to o and m,, for MAPI, with m, = 0.12,
v = 3.53, the resulting polaron radius is 7y =29.5 A. By
solving the finite-temperature problem[24] with numeric
integration, we can arrive at more accurate values for the
polaron radii of 26.8 A (electron, v = 19.88, w = 16.98)
and 25.3A (hole, v = 20.11, w = 16.84) at 300 K. The
internal parameters (v,w) are roughly linear in temper-
ature. The polaron decreases in size as a function of
temperature (Figure [2).

We can now estimate at what excitation density the
polarons overlap. If we define overlap as when the po-
larons ‘touch’ (i.e. each occupies a cube with side twice
that of the radius), and include a factor of two for cap-
turing both hole and electron polarons, the density is
simply

p=V"" = (202" (6)

Expressed in standard units, this is 3 x 10'® cm™3. This
result provides a simple and direct explanation for the
high-fluence transition to where the carrier cooling is
limited by a bottleneck[3], 4]. Namely the polarons are
overlapping to the extent that the above-bandgap ther-
mal energy is shared between overlapping polaron states
and cannot dissipate. In semiconductor physics, this is a
Mott semiconductor-metal transition. The phenomeno-
logical Mott criterion]29] for the polaron overlap predicts
a density of 4 x 10'" cm™3. These estimates also provide
a real-space explanation of the observed lasing threshold
of 10'® cm ™3, in that the electron and hole wavefunctions
are forced into an overlapping (and therefore optically ac-



tive) configuration.

From the finite-temperature variational model[24], the
polaron free energy is 35.5meV (electron) and 43.6 meV
(hole) at 300K. The zero-temperature Feynman vari-
ational solution gives a phonon occupation number of
N = 5 = 1.2. By Bose statistics we would expect this to
be N = 2.4 at 300K.

The excited states (and optical absorption) of polarons
have received considerable theoretical attention. The
path integral solution[30] has been recently confirmed for
weak and intermediate coupling by numerical diagram-
matic Monte Carlo[3I]. For MAPI, o = 2.4, we would ex-
pect to see a broad absorption band at 1-3 times the fun-
damental phonon frequency of wy=2.25 THz (i.e. a broad
photo-excited feature from 2.25THz to 7.75 THz). For
the intermediate coupling regime, the absorption spec-
trum is relatively featureless[30} [31], but a divergence
is expected at frequency v, which corresponds to the
Franck-Condon (lattice vibration) transition. We esti-
mate v = 20 (for the electron polaron at 300K). The
energy of such a transition (20hwp) is 186 meV when con-
sidering the effective phonon mode frequency (2.25 THz).
These overtones may be observable in the absorption and
emission spectra, but it is difficult to estimate if they will
be discrete features or form an inhomogeneous broaden-
ing. They may be misidentified as long lived thermal
states. The temperature-dependence of the state should
follow the linear dependence of v on temperature.

The Feynman polaron model includes an inherent dy-
namic energy exchange. The coherent oscillation corre-
sponds to energy exchange between electron and phonon
excitations, mediated by the time-retarded dynamic lat-
tice potential. The rate of this oscillation is simply w
(Eqn. B); w = 3 = 6.75 THz with the Feynman small-o
athermal solution, and w = 16.98 = 38.2 THz with the
300 K solution.

There are large uncertainties in the above quoted val-
ues, due to the approximations made in these theories,
not least the reduction from multiple phonon branches
to a single effective mode following Hellwarth et al.[32].
However, these predictions suggest that large polarons in
MAPI may have observable spectroscopic features that
could be used to characterise its internal state.

Hot polaron states. We have established that the
size of the transient exciton is commensurate with the
polaron state. We expect the exciton to quickly (on a
timescale of picoseconds) decompose into polarons. As
the bare-band effective-masses in halide perovskites are
nearly balanced, the hole and electron polarons are simi-
lar in character and size. Without a more detailed phys-
ical picture of the process, we assume an equipartition
of the above-bandgap energy (hv > 1.6 eV for MAPI)
into the hot hole and electron polaron states. Consider-
ing excitations up into the near-UV at 4.0eV, the initial
polaron energy could be as high as 1.2eV.

An excess carrier energy of 1.2eV translates by E =
kpT to a single degree-of-freedom ‘electron temperature’
of 13900K. A way of interpreting the high tempera-

tures extracted from transient experiments is to invert
this identity, and calculate amongst how many micro-
scopic states the excess energy has so far been shared.
This way an estimate is made of the size of the thermal
bath, the subpopulation of states coupled to the hot car-
rier. Once fully thermalised (local equipartition), this en-
ergy will be shared amongst all accessible phonon states
within the polaron. In a continuum model, the even-
tual (full thermalised) polaron temperature depends on
the volume and specific heat capacity (Cy) of the po-
laron. This we can calculate from the phonon density of
states. Summing over the Bose-Einstein occupied phonon
modes for MAPI, we find a per-unit cell specific heat ca-
pacity of 1.25meV K™™' at 300K. An electron polaron
of radius 26.8 A occupies 360 unit cells of the crystal.
The maximum initial temperature from considering the
above-bandgap energy (1.2 eV) being distributed thermo-
dynamically across the inorganic phonon modes associ-
ated with the phonon unit cells is 3 K. This temperature
seems too small to explain the low-fluence hot-carrier re-
sults. Instead some mechanism to cause greater confine-
ment, or a reduced effective specific heat capacity, must
be invoked.

The polaron radius we have calculated is an upper
bound: bulk polaron states are further localised by
disorder[33]. The temperature increases with localisation
(T < r=3) as shown in Figure[3| Point and extended de-
fects (surfaces, interfaces, dislocations, grain boundaries)
may localise polarons further, and so be exposed to local
heating and degradation of the halide perovskite mate-
rial.

Carrier cooling: initial thermalisation. The same
force driving polaron formation in MAPI, the dipolar
electron-phonon interaction, will dominate the initial hot
carrier thermalisation, as zone-centre optical phonons are
generated. The calculated optical-phonon inelastic scat-
tering time is 7 =0.12 ps at 300 K[24]. The characteristic
optical phonon frequency for MAPT is 2.25 THz[24], mak-
ing a quanta (E = hw) of this vibration equal to 9.3 meV.
The thermalisation rate by optical-phonon emission from
the polaron is thus hj“’ = 77.5meV ps~'. This provides
an estimate of initial polaron thermalisation.

Energy exchange will proceed until the charge carrier
is in thermal equilibrium with the sub-population of cou-
pled phonons. This sub-population will consist of the
zone-centre (infrared active) phonon modes in the near
vicinity of the polaron. The small size of this population
means that the effective specific heat capacity is reduced,
a higher effective polaron temperature will be reached
that predicted from bulk values. This occurs on a quan-
tised (per photon) basis, due to the small set of coupled
phonon states in the polaron.

Carrier cooling: heat transfer to the lattice.
Similar to electrical conductivity, phonon conductivity
is limited by scattering events. In the bulk, the most
frequent is phonon-phonon scattering. Due to energy
and momentum conservation rules, three-phonon scat-
tering is the lowest-order process. We previously[11] cal-



Excitation energy (eV)

50

200 —e— 4.00
g —— 3.00
A —<— 2.00
]
E 150 —— 1.61
(&)
3 26
e 2

24

8100 g \‘\‘\-\‘\
2 2
g g2
g M
= [0 s s
()
[_4

20.0 26.8

Polaron radius (&)

5 10 15 20 25
Polaron radius (&)

FIG. 3. Thermalised polaron temperature in MAPT as a func-
tion of polaron radius and excitation energy assuming a bulk
value of the heat capacity. The calculated bulk electron po-
laron radius of 26.8 A provides an upper bound for polaron
size. We take the lattice parameter (6.3 A) as a lower bound—
below this the continuum large polaron approach is not valid.
We consider excitation from the bandgap to near-UV. Inset
shows detail at larger radii (axes same as main).

culated the three-phonon interaction strengths for MAPI
and found them to be orders of magnitude stronger than
for CdTe and GaAs. These interactions provide the rates
for a stochastic (master equation) representation of how
energy flows microscopically towards equilibrium. Direct
propagation of this equation with time would provide a
microscopic picture of how the subpopulation of phonon
states in a polaron scatter and cool.

Here we consider the bulk effect of phonon-phonon
scattering. The sum of modal contributions, account-
ing for phonon lifetime, group velocity and heat capacity,
gives the overall thermal conductivity.[34] In MAPI, the
bulk thermal conductivity from a solution of the Boltz-
mann transport equation (in the relaxation time approx-
imation) is extremely low, 0.05 Wm~! K~1 at 300 K.[11]
In contrast, the calculated conductivity for GaAs and
CdTe is 38Wm 'K~ and 9Wm~! K—!, respectively.

To assess the role of the organic cation, a thermal con-
ductivity calculation was made on CsPbls in the cubic
perovskite phase. Due to the high (O}) symmetry, the
computational cost is greatly reduced when compared
against lower symmetry hybrid-halide structures. A com-
plication is that the vibrational instability of the cubic
CsPbl; structure results in a branch of modes having
an imaginary frequency, which is not considered in the
Brillouin zone summations. In reality, the room tem-
perature structure of many perovskites is dynamically
cubic[35, [36] and such higher-order anharmonicity is not
considered here. The calculated thermal conductivity for

CsPbls is 0.5 Wm— K~ at 300K. While still low, it
is an order of magnitude greater than 0.05 Wm™! K~!
for MAPI. Kovalsky et al.[37] recently measured ther-
mal conductivity in CsPbls as 0.45Wm™' K~! and in
MAPI as 0.3 Wm ! K~!, with the differences attributed
to rotations of CH3;NH3'. Additional contributions from
electron and ion heat transport, and issues with sample
purity, may explain some disparity between theory and
experiment.
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FIG. 4. The energy of a large polaron state (starting at 1.2
eV above the conduction band minimum, with a polaron ra-
dius of 26.8 A) in CH3NH3Pbls as a function of time. The
slow rate is due to the low thermal conductivity in MAPI (x
= 0.05Wm71K71). For comparison, we show the behaviour
using the thermal conductivities of CdTe (k = 9) and GaAs
(k = 38). Heat diffuses from MAPI on the order of 100 ps,
whilst for other conductivities the process is much faster, on
the order of 100 fs. This is in agreement with reported exper-
imental values: Refs. [38 (MAPI), 39 (CdTe) and [40] (GaAs).
Note that at short timescales, measurements of hot carrier
cooling in MAPI and CsPbls(x = 0.5) may appear linear due
to the slower exponential decay.

We first consider bulk heat diffusion in the low flu-
ence limit. Individual photon quanta are absorbed into
isolated hot polarons, cooling by scattering into phonon
modes, which then diffuse away from the polaron. Mod-
elling this classically, we can consider the polaron as a
hot sphere in a continuum of ambient temperature mate-
rial. This reduces to a 1-dimensional problem, where the
exponent is weighted by the 72 increasing shell of avail-
able states over the surface of the sphere. The initial
‘top hat’ heat distribution is convolved with a Gaussian
kernel to give an analytical expression for the evolution
of hot carrier energy with time (shown in Figure 4}). The



rate of cooling is determined by the diffusivity (D):

K
D=— 7
- )

where £ is the thermal conductivity, p is the density and
cp is the specific heat capacity. Phonon-phonon cool-
ing in MAPI is on the order of 100 ps. This compares
well to the observed timescale of slow carrier cooling. In
CsPbls a higher thermal conductivity results in faster
polaron cooling on the order of picoseconds. This effect
is stronger than would be expected b}; naive consider-
ation of the diffusivity, due to the D2 scaling of heat
conduction from a point in three dimensions.

The phonon-bottleneck is associated with a dimin-
ished sub-population of phonon states, originally envis-
aged in the gapped density of states present in low di-
mensional structures[I5]. A reduced population of vi-
brational states strongly couple to the charge carrier in
the polaron state. These are the infrared-active phonon
modes, identified in lattice dynamic studies[41] as octahe-
dral distortion modes of the Pbls~ framework. Such dis-
tortions for illuminated MAPI have been observed using
a time-dependent local structure analysis,[42] and further
signatures of polaron formation observed in the bromide
compound. [43]

At low fluence, the sub-population of polaron phonon
modes will thermalise the carrier to a higher tempera-
ture than expected for the lattice. The strong phonon-
phonon scattering introduces a 100 ps time constant for
the bulk flow of thermal energy out of an isolated polaron,
which broadly agrees with the observed time constants.
A more detailed understanding of this out-of-equilibrium
energy flow could be made by studying the microscopic
phonon-phonon scattering cross-sections, and consider-
ing the modal heat capacities.

Additionally, at high fluence, the polaron states over-
lap, so diffusion of phonons away from the polaron simply
results in reheating other polarons. There is no thermal

gradient to drive diffusion. In both cases, eventual cool-
ing will proceed by scattering into other (non electron-
phonon coupled) phonon modes.

In summary, we have shown how effective mass theories
of excitons and polarons—informed by first-principles
calculations—can be combined to describe the physical
processes behind the slow hot-carrier cooling rates ob-
served for halide perovskites. From an interpretation
of the density at which the polarons start to overlap,
we indicate that significant changes in the photophysics
should occur when n > 10'® cm™3. This corresponds to
the observed transition region between low-fluence ‘high
energy photoluminescence’ and high-fluence ‘hot-phonon
bottleneck’ regimes[8]. We have underlined the unusual
electronic structure of hybrid halide perovskites, possess-
ing a second conduction band at +2.5eV above the va-
lence band, and therefore caution careful interpretation
of photophysics data when pumping with photon energies
>2.5eV. Finally, we calculated a higher thermal con-
ductivity in the inorganic pervoskite, compared to the
organic-cation hybrid perovskite. This can help explain
the lack of hot-carrier photoluminescence in the Cs-based
material[6], and emphasises the phonon scattering ‘rat-
tler’ role of the organic cation in limiting thermal dissi-
pation of hot carrier energy.
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