

Nonparabolic electronic bandstructure in PV materials

Impact on optical and transport properties

Vice-Chancellor's Fellow

lucydot.github.io

I.whalley@northumbria.ac.uk

From physics to materials

University of Birmingham

Msci Theoretical Physics – w/ Prof. Andy Schofield transverse magnetoresistance in a quasi-2D metal **Birmingham City University**

Northumbria

University

- PGCE in post-compulsory education and training Imperial College London
- PhD in Materials Science w/ Prof. Aron Walsh
- defects and distortions in hybrid halide perovskites
- **Imperial College London**
- **Research Associate in Solar Cells**
- **Northumbria University**
- **Vice-Chancellor's Fellow**

Newcastle, UK

Newcastle, UK

Newcastle, UK

"shy bairns get nowt" shy children get nothing ...so speak up and don't be shy

- A. Effective mass is not as simple as it might seem
- B. Band non-parabolicity is very sensitive to the electronic structure method used
- C. Non-parabolicity can impact on various material properties (case study: hybrid halide perovskite)

Paper: L. Whalley et al. Phys. Rev. B 99, 085297 (2019)

Effective mass refresh

"Using DFT, we calculated the effective mass to be 0.34m_e"

mc

There are several definitions for effective mass

Describes:

applied electric field

velocity of electron wavepacket

average inertial effective mass

CZTS – HSE06 - SoC

Energy (eV)

GaAs – HSE06 - SoC

Northumbria

University NEWCASTLE

Non-parabolicity can be described using the Kane quasilinear dispersion

$$\frac{\hbar^2 k^2}{2m_{t,0}} = E(1+\alpha E),$$
$$m_t(E) = m_{t,0}(1+2\alpha E),$$

CZTS valence band [110] HSE06+SoC

Effective mass depends on the sampling range in reciprocal space and numerical method used

sampling density

		0.005A ⁻¹ (m _e)	0.025A ⁻¹ (m _e)
fitting method	Finite-difference (3-points)	0.06	0.12
	Unweighted LSQ (3-points)	0.05	0.08
	Fermi-Dirac weighted LSQ (many points)	0.07	0.07

See the effmass package for an implementation of these methods: github.com/lucydot

CZTS valence band [100], PBESol+SoC

"Using DFT, we calculated the effective mass to be $0.34m_e$ "

- Which effective mass?
- Over what range?

- A. Effective mass is not as simple as it might seem
- B. Band non-parabolicity is sensitive to the electronic structure method used
- C. Non-parabolicity can impact on various material properties (case study: hybrid halide perovskite)

Paper: L. Whalley et al. *Phys. Rev. B* 99, 085297 (2019)

Local and semilocal approximations underestimate the band gap and overestimate non-parabolicity

Spin-orbit effects lead to increased non-parabolicity in the valence band

Spin-orbit effects lead to increased non-parabolicity in the valence band

For MAPI, spin-orbit effects lead to increased non-parabolicity in the valence and conduction bands

- A. Effective mass is not as simple as it might seem
- B. Band non-parabolicity is very sensitive to the electronic structure method used
- C. Non-parabolicity can impact on various material properties (case study: hybrid halide perovskite)

Paper: L. Whalley et al. *Phys. Rev. B* 99, 085297 (2019)

Hybrid perovskites: A computational challenge

Hybrid perovskites: A computational challenge

m* from Transient Absorption Spectroscopy

The kane quasi-linear approximation can explain variations in TAS data

m* estimations from TAS vary : 0.14 - for concentrations up to 6x10¹⁸

0.30 - for concentrations up to 1.5x10¹⁹

Our calculated effective mass varies from 0.19 to 0.35

^{on (cm⁻³)} Expt: The Fermi level is shifted into the conduction band at a carrier concentration ~10¹⁸cm⁻³

Polaron mobility decreases above a carrier concentration of ~10¹⁸cm⁻³

- A. Effective mass is not as simple as it might seem The definition, range in k-space and numerical implementation matter
- B. Band non-parabolicity is very sensitive to the electronic structure method used
 Best results for accurate E_g and inclusion of SoC
- Non-parabolicity can impact on various material properties (case study: hybrid halide perovskite) Impacts at concentrations > 10¹⁸ (concentrated solar, PL studies)

L.D. Whalley, J.M. Frost, B.J, Morgan and A.Walsh *Phys. Rev. B* 99, 085297 (2019)