A-site mixing and non-radiative trapping in hybrid halide perovskites

Dr Lucy Whalley

Vice Chancellor's Fellow, Northumbria University

lucydot.github.io 🔀 l.whalley@northumbria.ac.uk

Hello!!

- 2015-2019: PhD student in MDG (Perovskites!)
- 2020: Maternity Leave (Robin!)
- 2020-current: Northumbria University (Way aye man!)

My update....("what's occurring?")

- Teaching
 - Introductory programming labs (1st year)
 - Computational Physics (2nd year)
 - Quantum optics (don't ask) (3rd year)

nu-cem.github.io/CompPhys/

An Introduction to Computational Physics

Part two: Getting results

- Modelling with ordinary differential equations
- Modelling with partial differential equations

Part three: Getting it out there

- Python scripts and the Unix terminal
- Version control and Github
- Testing and documentation
- Open science and build-your-own website

github.com/lucydot/ChooChoo

ChooChoo! The Checklist Tool

- 📋 Create checklists for your students to work through
- ${\mathscr O}$ Link checklist items to a question bank and/or tutorials
- ? Enable students contributions to the question bank
- Use student peer-review to decide which questions are published
- 📊 Generate online plots to summarise class progress in real time

My update....

- Research
 - Chalcogenide perovskites
 - Vibrational spectroscopy BaZrS₃
 - Thermodynamics (NU-CEM/ThermoPot)
 - Mixed cation halide perovskites (more on this later)...

Funding opportunity

– Software

Software for research communities ⁴ SOLCERE www.solcore.solar

> Interoperability Reproducibility

Reproducibility

ThermoPot: An ab-initio thermodynamic modelling package

Prakriti Kayastha BaZrS3 Michael Jones Experiment/Theory CZTS

The Journal of Open Source Softw

Effmass

ChooChoo! The Checklist Tool

A-site mixing and non-radiative trapping in hybrid halide perovskites

A-site mixing and non-radiative trapping in hybrid halide perovskites

$\begin{array}{c} & e^{-} \\ & & e^{-} \\$

Electron and hole are extracted to the external circuit

Point defects trap electron and/or hole. Energy lost as heat.

<u>A-site mixing and non-radiative trapping</u> in hybrid halide perovskites (ABX₃)

Chem. Mater. 2018, 30, 15, 5194-5204

Angew. Chem.Int. Ed.2022,e202205617

Cesium (Cs)–formamidinium (FA)–methylammonium (MA) mixed cation perovskite materials have led to the most **efficient** and **stable** perovskite solar cells reported

composition

property

<u>A-site cation</u> mixing

What's the connection?

<u>Non-radiative</u> <u>trapping rate</u>

ACS Energy Lett. 2017, 2, 10, 2424-2429

A-site mixing "locks in" tilt patterns

MA_{0.875}Cs_{0.125}Pbl₃ mode decomposition

J. Am. Chem. Soc. 2021, 143, 24, 9123–9128

An energy surface is used to describe the change in energy and geometry after charge capture

Question: Can A-site cation mixing be used to tune octahedral tilting and ΔQ ?

Kabsch interpolation is required to describe molecular rotations accurately

20

Q (amu^{1/2} Å)

40

60

Unpublished results

Kabsch interpolation may be useful for other systems – ASE-based code in development

The iodine interstitial defect shows similar behaviour in single and mixed-cation perovskites

H-centre formed in mixed-cation materials up to a MA:Cs ratio 1:1 PES shape largely unaffected by mixing.

System	ħω (meV) neutral	ħω (meV) negative
Single cation: I_i	5.26	7.06
Mixed cation: I _i	5.26	5.90
DX-centre: Si _{Ga}	34.8	24.5

A-site cation mixing reduces ΔQ , leading to an increase in the electron-hole recombination rate* *EP-coupling term tbd

-0.5 -20

0

ΔO decreases

Unpublished results

60

20

 $O(amu^{1/2} Å)$

The results indicate that A-site composition can be used to tune ΔQ and the capture rate at defect sites

Thank you!!

I have learnt a lot from the MDG, and have had a great time doing so

Get in contact -I.whalley@northumbria.ac.uk

Here's to the next 10 years

Hybrid halide perovskites have an unusual defect chemistry

High open circuit voltage from solution-processed materials – 1.1V in 2012 Lee et al. *Science* 2012 338, 6107, 643-647

Dynamic defects that are associated with halide segregation and hysteresis Walsh et al. *ACS Energy Lett.* 2018, 3, 8, 1983–1990

Kabsch interpolation is required to describe molecular rotations accurately

Linear interpolation is adequate for many systems

ACS Energy Lett. 2021, 6, 4, 1392–1398

Our results demonstrate the strong electron-phonon coupling that is possible in soft semiconductors

Results for CH₃NH₃PbI₃:I_i using DFT (HSE06 +SoC)

Electron capture at the neutral iodine interstitial is fast, subsequent hole capture is slow

Follow on questions:

Can we translate this result to other systems?

- Mixed A-site cation materials (FA/MA/Cs)
- Grain boundaries

Locked octahedral tilting in mixed A-site cations: ACS Energy Lett. 2017, 2, 2424–2429

Can we connect this result to the observed unusual macroscopic processes?

- halide transport
- Light-induced thermal degradation

e.g. J. Mater. Chem. C, 2019, 7, 9326-9334

Thank you for listening

Dr Lucy Whalley

- Iucydot.github.io/talks/
- I.whalley@northumbria.ac.uk

Associated paper:

J. Am. Chem. Soc. 2021, 143, 24, 9123–9128

Co-authors/collaborators:

Puck van Gerwen, Sunghyun Kim, Jarvist Frost, Samantha Hood, Aron Walsh

Additional picture credits:

Slide 3: https://doi.org/10.1557/mrs.2015.166

- A-site mixing determines the extent of tilting
- Tilting is associated with charge capture at the iodine interstitial
- What is the relationship between A-site mixing and charge capture?
- Can we use A-site mixing to control the rate of charge capture?
- Prediction: If I mix MA:Cs then I can shift delta Q and adjust the capture rate. The shape and energetics may not be affected in the same way.
- Test prediction/
- Kabsch rotation, SQS structures

- The underlying electronic structures were calculated using density functional theory (DFT) - plane wave basis set with an energy cutoff of 400 eV.
- Projection operators were optimized in real space with an accuracy of 0.02 meV per atom
- 2 × 2 × 2 gamma centered Monkhorst–Pack mesh was used for the Brillouin zone integration.
- HSE06 functional with spin-orbit coupling for the PES
- PBEsol functional for the electron-phonon coupling term
- The interstitial was placed in a 192-atom pseudocubic supercell.

Charge transition levels MAPI:I_i

Negative U behaviour, with the neutral defect metastable in equilibrium. The charge transition levels are highly sensitive to the defect geometry and XC functional used.

Quantum tunnelling in MAPI:I_i

Electron capture is not fully classical as phonon overlap persists below the classical barrier (red), resulting in significant quantum tunnelling.