Python gives you wings! How a little bit of code can improve the quality and efficiency of your research

Hello!!

I'm Lucy (Dr Lucy Whalley)

- Computational materials scientist: solid state physics + quantum chemistry + high-performance-computing + software engineering
- Fellow of the Software Sustainability Institute (better software, better research)
- Topic Editor for the Journal of Open Source Software

Animation courtesy of Dr Jarvist Frost

Writing and sharing research code can transform the way you do science

It can make your research more:

Robust
 Efficient
 Reproducible
 Impactful

reduce "silly" mistakes automate repetitive tasks people can repeat your work people can use and extend your work

Learning to code is a journey

1. Research Robustness

Reduce silly mistakes

Pas	te 💞	BIU		
A1	*	× ×	$f_{\mathbf{x}}$	
	A	В	С	
1	·····			
2		X		
3			2	
4				
5				
From The Verge		19.6% of genetic rese		

Contraction of the second s

Someone at JPMorgan Chase accidentally added two cells in a spreadsheet instead of taking their average and lost the company \$2 billion USD.

19.6% of genetic research crunched in excel contains errors

Youtube: stand up maths

"you cannot just throw together some scripts that use excel files when you have national, significant data"

> THE UK GOVERNMENT TEMPORARILY LOST

15,841

POSITIVE COVID TEST RESULTS BETWEEN 25TH SEPTEMBER AND 2ND OCTOBER

Matt Parker

PARKER

Humble P

1. Research Robustness

🛠 Key tool: Python

US Wind turbine database

198.6597295514512

Total rated capacity in MW

2. Research Efficiency

Automating common tasks


```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('./uswtdb_v5_3_20230113.csv')
mean_cap = []
for year in pd.unique(df['p_year'].values):
    df_year = df[df['p_year'] == year]
    mean_cap.append(df_year['p_cap'].mean())
```

plt.bar(pd.unique(df['p_year'].values),mean_cap)

Plot the average capacity of an installation by year

2. Research Efficiency X Key tool: Community

Teaching basic lab skills for research computing

Our Core Lessons in English

Lesson	Site	Repository	Reference	Instructor Notes
The Unix Shell		.	0	•
Version Control with Git		<u>.</u>	0	0
Programming with Python		.	0	•
Plotting and Programming in Python		ō	•	•
Programming with R		.	•	•
R for Reproducible Scientific Analysis		.	•	•

Upcoming Workshops

Click on an individual event to learn more about that event, including contact information and registration instructions.

ባ	Instructors: Tom Russell, Fred Thomas Helpers: Sebastian Engelstaedter, Samira Barzin	Mar 14 - Mar 15, 2023
ባ	Michigan Technological University Instructors: Pradeep Eranti, Christian Ayala	Mar 20 - Mar 24, 2023
ባ	 University of Stuttgart, Germany Instructors: Matthias Braun, Björn Schembera, Jan Range Helpers: Anett Seeland, Dorothea Iglezakis 	Mar 28 - Mar 31, 2023
ባ	Max Planck Institute for Evolutionary Biology Instructors: Carsten Fortmann-Grote, Nikoleta Glynatsi Helpers: Beate Gericke	Apr 4 - Apr 6, 2023
ባ	E Skidaway Institute of Oceanography Instructors: Lucy Quirk, Claire Zwiers Cook Helpers: Mallory Mintz	May 19 - May 20, 2023

2. Research EfficiencyKey tool: Community

Software Sustainability Institute

Code mentorship programme Deadline: 20th March

Research Software Camp: FAIR software

The next Research Software Camp will be held from 19th to 30th June 2023. Over the course of two weeks, we will host a panel discussion, basic skills workshops (R, Python, visualisation, etc.) and a mentorship programme.

Research Software Camp: Supporting Mental Health

Our autumn Research Software Camp will address approaches to wellbeing and mental health in research software from 7 to 18 November 2022.

Research Software Camp: Next steps in coding

Our Research Software Camp: Next steps in coding ran from from 16th to 27th May 2022. It focused on improving computational and training skills and exploring existing resources out there.

Research Software Camp: Beyond the Spreadsheet

The Research Software Camp: Beyond the Spreadsheet ran from 1st to 12th November 2021 and focussed on the uses of spreadsheets in research and first steps into further use of software in research.

Research Software Camp: Research Accessibility

The first Research Software Camp on Research Accessibility took place from 22 February to 5 March 2021. The topic covered how to make research tools, techniques, datasets, software, protocols, etc. accessible and how to get new or more collaborators.

3. Research Reproducibility Others can repeat your work

Reproducibility

"Reproducibility means that when you repeat an experiment or investigate something again, the result should be the same. Reproducibility is a cornerstone of the scientific process." Gustav Nilsonne

Is science in trouble? An insight into the reproducibility crisis

Yan-Yi Lee talks about the reproducibility crisis as well as the recent collective efforts that scientists have shown to address it.

Relatively low hanging fruit: *share your code and data*

X Key tool: Jupyter Notebook

File Edit Kernel Widgets Help View Insert Cell Run С \mathbf{b} Code \sim Analysis of average installation capacity In [26]: import pandas as pd import matplotlib.pyplot as plt 2 df = pd.read csv('./uswtdb v5 3 20230113.csv') mean cap = [] for year in pd.unique(df['p year'].values): df year = df[df['p year'] == year] 9 mean cap.append(df year['p cap'].mean()) 10 plt.bar(pd.unique(df['p_year'].values),mean_cap) 11 12 Out[26]: <BarContainer object of 41 artists>

Jupyter Windfarm_analysis Last Checkpoint: an hour ago (unsaved changes)

4. Research Impact X Key tool: Github / Gitlab

Digital Object Identifier

Run notebooks without download

Publish your code in a journal

E README.md

github.com/NU-CEM/ThermoPot

package DOI 10.5281/zenodo.7351356

A A This repository is still in development, and some functionality is untested. Use with caution, or wait until we fully test it!

💭 build-docs passing 💭 run-tests passing 💭 lint-code passing

Software for ab-initio thermodynamic modelling of material formation and decomposition.

- 둘 The documentation is here.
- C This code is made available under the GNU General Public Licence (GPL) v3. See the LICENSE file for the full text.
- / If you use this package for your research please cite accordingly.

Please note

This work adapts and extends a previous repository developed by Adam Jackson: Thermodynamic model of CZTS.

High Performance Computing

A standard laptop for a standard task

input \rightarrow computation \rightarrow output

When tasks take too long.....

When one server is not enough....

Server

cluster / supercomputer

https://rse.shef.ac.uk/hpc-intro-tuos-citc/

https://www.archer2.ac.uk/training/

Oswald User Guide

https://rse.shef.ac.uk/hpc-intro-tuos-citc/

ij

Research Computing Community

Code mentorship programme

Deadline: 20th March

Questions / discussion

- Do you write code for your research?
- Are there particular research tasks you could automate?
- Do you feel that you *just can't code*?
- Would you like to attend coding-related events at Northumbria?
- What code-related barriers do you face?