Designing new materials using quantum chemistry and high-performance computing

Dr Lucy Whalley

Northumbria University, Newcastle upon Tyne, United Kingdom

Software Sustainability Institute

Northumbria University NEWCASTLE

EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities

Research Themes

Computational materials science:

solid state physics + quantum chemistry + high-performance-computing +

Prof. Aron Walsh, Imperial

Dr Jarvist Frost, Imperial

Prakriti Kayastha, Northumbria

Dr Giulia Longo, Northumbria

Dr. Adam Jackson, STFC

Software Sustainability Institute

Energy materials:

Photovoltaics: halide and chalcogenide perovskites **Battery** applications

Software sustainability (*better software, better research*):

documentation + testing + maintenance +

Outline

- 1) Introduction: Materials modelling
- 2) Background: Lead halide perovskites
 - Lattice anharmonicity
 - Defect physics
- 3) **Results:** Steric engineering of point defects in lead halide perovskites

Modelling microscopic behaviour

e.g. solar cell efficiency

Materials Modelling: The Dream

 $\underbrace{i\hbar\frac{\partial\psi}{\partial t}\psi(\mathbf{r},t) = -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r},t) + V(\mathbf{r},t)\psi(\mathbf{r},t)}_{0}$

The Schrödinger Equation (1926)

"The underlying physical laws necessary for a large part of physics and the whole of chemistry are thus completely known...."

Paul Dirac (1929)

Materials Modelling: The Dream

Materials Modelling: The Harsh Reality

The Schrödinger equation cannot be solved exactly for systems of interest (3N dimensional equation)

Materials Model

Approximate model: static lattice

Real behaviour: lattice distortions due to temperature

Approximate model: perfect defect-free lattice

Real behaviour: defect formation at finite temperature

tions

e transitions....

evice performance ⁻ mobility, carrier

Materials Modelling: So what can we do?

"Theoretical materials science and technology has several levels, and also several roles. It provides a framework in which to organize empirical results. It can be used to scope a new field. It can be used to separate out the components of some complex system, where experiment alone still confuses. And one can imagine cases—especially for the shortest or the longest timescales—where theory can outreach experiment."

Marshall Stoneham Defects in semiconductors and oxides: where are the gaps in first principles theory?

Complex system: Lead halide perovskites

X INDEPENDENT PREMIUM

'Revolutionary' solar power cell innovations break key energy thre

Next generation cells surpass limits of today's cells and will accelerate rollout of cheaper, more efficient solar power

IN FOCUS

Hundreds of years after it was discovered, one material is about to change the world

Rapid breakthroughs in recent months mean 2023 could be the year that perovskite's potential is finally realised, bringing cheaper and more efficient ways of harvesting the Sun's energy, writes **Anthony Cuthbertson**

The record-breaking solar cell converted 28.6% of the sun's energy into electricity, as independently certified by Fraunhofer ISE. The cell was made by depositing a thin film of the material perovskite onto a conventional silicon solar cell. The combined 'perovskite-on-silicon' tandem solar cell achieves a conversion efficiency that is substantially higher than that of mainstream silicon-only solar cells, which average 22–24%.

Lead halide perovskites, APbX₃

A challenge for experimental characterisation and computational modelling

- Sensitive to light and oxygen
- Large anharmonic tilting
- <u>High defect densities</u>
- Self-healing
- Mobile ions
- Halide segregation
- Spin-orbit effects

Inorganic octahedra (PbI₃)

Methylammonium lead iodide = "MAPI"

See for example: J. Chem. Phys. 146, 220901 (2017)

Lead halide perovskites, APbX₃

Large anharmonic tilting

→ Band gap broadening (30meV at RT) Phys. Rev. B 94, 220301 (2017)

→ Ultra-low thermal conductivity (0.05 Wm⁻¹K⁻¹) Phys. Rev. B **94**, 220301 (2017)

→ Slow cooling of hot polarons (100's ps) ACS Energy Lett. 2, 12, 2647–2652 (2017)

→ Coupled strongly to defect levels (S_{HR} = 350) *J. Am. Chem. Soc.* 143, 24, 9123–9128 (2021)

A dynamically disordered, anharmonic pseudo-cubic phase above 330K

Video from Dr Jarvist Frost, Imperial College London Youtube channel: JarvistMooreFrost

pubs.acs.org/JPCC

Steric Engineering of Point Defects in Lead Halide Perovskites

Published as part of The Journal of Physical Chemistry C virtual special issue "The Physical Chemistry of Perovskites".

The most stable and efficient ABX₃ perovskite solar cells employ mixed A-site cations

Byranvand et al., Adv. Optical Mater. 2022, 10, 2200423

The A-site cation in ABX₃ *indirectly* affects the electronic structure at band edge

Steric engineering: tuning the electronic band gap via A-site cation size

Filip et al., *Nat. Commun.* 2014, **5**, 5757

Prasanna et al., J. Am. Chem. Soc. 2017, 139, 32

Can we use steric engineering to determine defect activity?

In a perfect crystal....

Non-radiative processes reduce photovoltaic performance

Experimental measurements of defect activity in ABX₃ (X=halide)

Single crystals have a very low density of trap states (<10¹² cm⁻³)

Shi et al., *Science.* 2015, 347, 6221, 519-522 Siekmann et al., *ACS Energy Lett.* 2021, 6, 3244–3251 Trap states are associated with the iodine interstitial at grain boundaries

Thermal admittance spectroscopy + capacitance-voltage

Ni et al., Nat Energy 7, 65–73 (2022).

Theory predicts halide ions are active and mobile

A configuration coordinate diagram is used to describe the change in energy and geometry after carrier capture

capture rate = C x trap density x carrier density

Semi-classical picture Three key quantities which determine capture rate: $\Delta Q, \Delta E (=E_{CTL}), \hbar \omega$

More generally, PES curvature

Fermi's golden rule is used to give a quantum mechanical prediction of carrier capture coefficient *C*

$$C = V \frac{2\pi}{\hbar} g W_{\text{if}}^2 \sum_m \Theta_m \sum_n |\langle \chi_{im} | \Delta Q | \chi_{fn} \rangle|^2$$

 $\times \delta(\Delta E + m\hbar\omega_{\rm i} - n\hbar\omega_{\rm f})$

Alkauskas et al., Phys. Rev. B 90, 075202 (2014)

An easily distorted ('soft') perovskite lattice leads to large lattice relaxation after carrier capture

Whalley et al., *J. Am. Chem. Soc.* 2021, 143, 9123–9128

How best to describe distortions in a hybrid material?

Inorganic materials

Lattice relaxation corresponds to translational motion

Hybrid materials

Lattice relaxation corresponds to rotational motion of molecule

Solution: Kabsch interpolation to describe translational and rotational motion

a and **b** are the vector components. Minimise L(C) to solve for rotation matrix C.

NU-CEM/Kabsch_interpolation

How best to describe distortions in a hybrid material?

Energy is dissipated through rotations of the MA cation, resulting in significant reductions in the hole capture/release barrier height.

Carrier capture at the iodine interstitial in MA_{1-x}Cs_xPbl₃

A-site cation mixing in $MA_{1-x}Cs_xPbI_3$ impedes PbI_6 octahedral tilting after carrier capture, **leading to a reduction in \Delta Q.**

Why the reduction in ΔQ ? Lessons from organic photochemistry

Aggregation induced emission

dimethyl tetraphenylsilole (DMTPS)

Peng et al., J. Mater. Chem. C, 2016, 4, 2802-2810

Steric hindrance is used to engineer charge transport pathways in organic materials

A-cation mixing produces a symmetry-lowering lattice distortion to a tetragonal phase.

The reduced steric size of Cs (1.81 Å) compared to MA (2.70 Å) leads to a volume reduction **mediated through condensation of the M3+ octahedral tilting mode**.

The iodine interstitial in MA_{1-x}Cs_xPbl₃ can display a wide range of defect activity

Defect activity is highly sensitive to ΔQ

The iodine interstitial in MA_{1-x}Cs_xPbl₃ can display a wide range of defect activity

The iodine interstitial in $MA_{1-x}Cs_{x}PbI_{3}$ can display a wide range of defect activity

Compressively strained regions are associated with increased non-radiative decay

347, 6221, 519-522

Single crystals have a very low density of trap states Shi et al., Science. 2015, $(<10^{12} \text{ cm}^{-3})$

The iodine interstitial in MA_{1-x}Cs_xPbl₃ can display a wide range of defect activity

Defect activity is highly sensitive to ΔQ , ΔQ is sensitive to crystal phase

The same defect can display a wide range of defect activity – from electrically inactive to recombination centre

Similar behaviour reported with molecular dynamics

Nan et al., *Adv. Energy Mater.* 2018, 8, 1702754 Cohen et al. *J. Phys. Chem. Lett.* 2019, 10, 16, 4490–4498 Wang el al., *. Phys. Chem. Lett.* 2022, 13, 25, 5946–5952

Thank you

- For accurate predictions of defect activity, translations & **rotations** of molecules need to be considered
- Defect activity is sensitive to the available lattice relaxation pathways
- Cation mixing (Cs/MA) \rightarrow phase transition \rightarrow reduced $\Delta Q \rightarrow$ increased trapping
- The iodine interstitial in MA_{1-x}Cs_xPbl₃ can display a wide range of defect activity: electrically inactive, trapping & de-trapping, recombination site.

Can we use ΔQ to engineer for particular defect properties ?

Control through composition, temperature, particle size, dimension...
Side effects: defect concentration, phase transformations, ion transport, polaron formation

Thank-you to software developers: CarrierCapture, ICET (SQS), ISOTROPY, ASE, <u>PIEFACE</u>, Nonrad (EP coupling), sxdefectalign

cydot.github.io

Dr Lucy Whalley Northumbria University Malley@northumbria.ac.uk

Potential Energy Surface (PES)

To predict atom motion we need to model the potential within which the atoms move

A platter of methods to choose from

Attempted classification of *ab-initio* methods for phonons

Perturbative approaches vs AIMD

30 respondents (65%) answered ph	Perturbative Taylor expansion	Ab initio molecular dynamics
	(Most often) less computationally intensive	Computationally intensive: phase space sampling & frequency resolution
	Treating anharmonic effects as a perturbation– validity?	Anharmonicity at all orders
	Limited to smaller amplitude displacements (not suitable at high-T or near a phase transition)	Suitable for large amplitude displacements
alamode sscha phono3py hive and vintage sscha phonopy No tdep hiphive scaild		Equilibrium position can change with temperature
pnx	phonopy, alamode	

See e.g. Whalley et al (2016) Phys. Rev. B 94, 220301(R)

Model validity depends on the shape of the PES and the mode occupation $\bar{n}_i(T)$ from Bose-Einstein statistics

Low temperature, low energy eigenstates dominate

PES as potential in 1D Schrodinger equation → solve to give vibrational eigenstates High temperature, higher energy eigenstates contribute

Harmonic approximation invalid

Harmonic approximation valid

See e.g. Whalley et al (2016) Phys. Rev. B 94, 220301(R)

Model validity depends on the shape of the PES and the mode occupation $\bar{n}_i(T)$ from Bose-Einstein statistics

Harmonic approximation

$$\begin{split} H &\approx H_0 + \frac{1}{2} \Phi_{ij}^{\alpha\beta} u_i^{\alpha} u_j^{\beta} & \text{Taylor expansion of energy to} & i, j \text{ Atom labels} \\ \alpha, \beta \text{ Cartesian directions} \\ u &= r - r_0 & l \text{ Unit cells} \\ \Phi_{ij}^{\alpha\beta} &= \frac{\partial^2 H}{\partial u_i^{\alpha} \partial u_j^{\beta}} = -\frac{\partial F_i^{\alpha}}{\partial u_j^{\beta}} \approx \frac{F_i^{\alpha}}{\Delta u_j^{\beta}} & \bullet F_i^{\alpha} \\ \bullet & \bullet F_i^{\alpha} \\$$

Harmonic approximation

$$\begin{split} H &\approx H_0 + \frac{1}{2} \Phi_{ij}^{\alpha\beta} u_i^{\alpha} u_j^{\beta} & \text{Taylor expansion of energy to} & \begin{array}{c} l, \mathcal{J} & \text{Atom labels} \\ \alpha, \beta & \text{Cartesian directions} \\ l & \text{Unit cells} \\ \end{array} \\ D(\mathbf{q})_{ij}^{\alpha\beta} &= \frac{1}{\sqrt{m_i m_j}} \sum_l \Phi_{i0jl}^{\alpha\beta} \exp\{i\mathbf{q} \cdot [\mathbf{r}_{jl} - \mathbf{r}_{j0}]\} & \begin{array}{c} \text{Dynamical matrix} \\ \text{from fourier} \\ \text{transform of } \phi \\ \end{array} \\ D(\mathbf{q})W(\mathbf{q}) &= \omega^2(\mathbf{q})W(\mathbf{q}) & \begin{array}{c} \text{Diagonalise to get squared phonon} \\ \text{frequencies } \omega^2 \text{ and eigenvectors W} \\ \end{array} \\ H(Q) &\approx H_0 + \frac{1}{2}\omega^2Q^2 & \begin{array}{c} \text{Harmonic energy is expressed as a function of} \\ \text{displacement amplitude } Q \\ \end{split}$$

Harmonic energy is expressed as a function of displacement amplitude Q

.

.

(An)harmonicity

Pallikara *et al* 2022 *Electron*. *Struct*. **4** 033002

Dynamical instabilities

Pallikara *et al* 2022 *Electron. Struct.* **4** 033002

Higher order Taylor expansion

Harmonic

Phonons

Non-interacting phonons

"Infinite lifetimes"

Taylor expansion of the potential energy surface

$$H = H_0 + \Phi_i^{\alpha} u_i^{\alpha} + \frac{1}{2} \Phi_{ij}^{\alpha\beta} u_i^{\alpha} u_j^{\beta} + \frac{1}{6} \Phi_{ijk}^{\alpha\beta\gamma} u_i^{\alpha} u_j^{\beta} u_k^{\gamma} + \dots$$

Ionic Forces = 0 at equilibrium

Crystal

Potential

Static model

Anharmonicity

Phonon scattering Required for e.g. thermal conductivity

Higher order Taylor expansion

"But it was also known that [....] the so-called anharmonic terms, were important. These terms cause a coupling between the otherwise independent waves of different length and direction. They are responsible for the absorption of sound waves, which, in the linear approximation, could travel indefinite distances without damping, and for the heat conductivity."

-- Rudolf Peierls, Bird of Passage (or see "Recollections of early solid state physics")

Force constants are the key ingredient

Calculating force-constants

- Force constants are the essential ingredient for phonon calculations
- Calculating force constants is often the most computationally intensive part of a lattice dynamics calculation
- Computational cost is determined by:
 - Rank of tensor $(2^{nd}/3^{rd}/4^{th} \text{ order})$
 - Number of atoms in system (supercell expansion)
 - Crystal symmetry

Calculating force constants

Real space finite displacement (AKA Direct, Supercell)	Density Functional Perturbation Theory	
Intuitive approach to understand	Less intuitive theoretical approach	
Flexible: can be combined with a variety of functionals, and levels of theory	Requires implementation for a particular level of theory	
Can be split into many smaller jobs: can "game" the computer queues	Consists of one larger job which requires significant memory	
Can only calculate perturbations at the gamma point: supercells commensurate with <i>q</i> are required	Perturbation of of any wave vector <i>q</i> possible (note: not available in VASP)	
Scales poorly with system size	Improved scaling with system size; for larger jobs can be computationally cheaper	

Stop! Do you need to do the calculation?

Phonon databases

- phonondb
- Materials Project
- NOMAD

$\leftarrow \rightarrow \mathcal{C}$ (A Not Secure | phonondb.mtl.kyoto-u.ac.jp/ph20180417/d000/mp-252.html

phonondb@kyoto-u

Materials id 252 / BeTe / F-43m (216)

G 🖞 ☆ 🗐 🔲 🕒 (Update 🗄

Search

- Date page updated: 2018-4-17
- Space group type: F-43m (216) / F -4 2 3
- Number of formula units (Z): 4
- Phonon raw data: mp-252-20180417.tar.lzma
- Link to Materials Project: https://www.materialsproject.org/materials/mp-252/

Phonon band structure

Phonon DOS

Finite displacement workflow (harmonic)

TASKS

Relax unit cell	 Build supercell and generate displacements 	→ Calculate forces	Extract forces, build and diagonalise dynamical matrix	(optional) calculate born → effective charges → & dielectric tensor	Post-process e.g. dispersion, heat capacity
-----------------	--	--------------------	--	---	---

CODES

+ codes that can stitch it all together, e.g.

Knoop et al., (2020) Journal of Open Source Software, 5(56), 2671

Live example

The sum over the unit cells in the dynamical matrix requires supercells that adequately capture all pairwise interactions

$$D(\mathbf{q})_{ij}^{\alpha\beta} = \frac{1}{\sqrt{m_i m_j}} \sum_{l} \Phi_{i0jl}^{\alpha\beta} \exp\{i\mathbf{q} \cdot [\mathbf{r}_{jl} - \mathbf{r}_{j0}]\}$$

• For this reason you may want a cell that is fairly cubic

• For this reason you need to do convergence testing

```
from ase.build import bulk
from ase.build import find_optimal_cell_shape, get_deviation_from_optimal_cell_shape
import numpy as np
conf = bulk('Au')
P1 = find_optimal_cell_shape(conf.cell, 32, 'sc')
Atomic Simulation Environment
```

Atom-atom interaction

The finite displacement method requires a supercell to capture off- Γ phonons

If you want to access a off- Γ wave vector q, you need to map that wave vector q to the Γ -point by using a commensurate supercell

Maurya et al Physical Review B 96, 134114 (2017)

Imaginary modes can be formed from interpolation at q-points incommensurate with the supercell

Rahim et al, *Chem. Sci.*, 2020,11, 7904-7909

Some supercell expansions can suppress distortions and lead to incorrect results (bigger isn't always better)

2x2

CsPbI₃ tilting distortion to tetragonal phase

Most studies use diagonal supercells, but non-diagonal supercells can be used to reduce computational cost

$$\begin{pmatrix} \mathbf{a}_{s_1} \\ \mathbf{a}_{s_2} \\ \mathbf{a}_{s_3} \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{p_1} \\ \mathbf{a}_{p_2} \\ \mathbf{a}_{p_3} \end{pmatrix}$$

Diagonal elements. Supercell is $S_{11}X S_{22}X S_{33}$ primitive cells. e.g. "2x3x1 supercell" is 6 primitive cells

Lloyd-Williams and Monserrat, Phys. Rev. B **92**, 184301

$$S = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 diagonal supercell
4 primitive cells
$$S = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
 non-diagonal supercell
2 primitive cells

2)

 $\langle 0 \rangle$

Numerical approaches can lead to broken translational symmetry and small imaginary frequencies around the gamma point.

To fix this either increase size of the FFT grid (plane wave basis) or integration grid (atom-centred basis), or apply a post-hoc correction FC_SYMMETRY = .FALSE.

FC_SYMMETRY = .TRUE.

"Phonons & Phonopy: Pro Tips" from J.M. Skelton (available on SlideShare)

Non-Analytical Corrections

LO/TO splitting results from the macroscopic electric field associated with a separation of ions (Coloumb interaction)

- Frequency is upshifted.

LO/TO splitting results from the macroscopic electric field associated with a separation of ions (Coloumb interaction)

Post-hoc correction using Born effective charge and high-frequency (optical, ionclamped) dielectric tensors

$$D_{\alpha\beta}(jj', \mathbf{q} \to \mathbf{0}) = D_{\alpha\beta}(jj', \mathbf{q} = \mathbf{0}) + \frac{1}{\sqrt{m_j m_{j'}}} \frac{4\pi}{\Omega_0} \frac{\left[\sum_{\gamma} q_{\gamma} Z_{j,\gamma\alpha}^*\right] \left[\sum_{\gamma'} q_{\gamma'} Z_{j',\gamma'\beta}^*\right]}{\sum_{\alpha\beta} q_{\alpha} \epsilon_{\alpha\beta}^{\infty} q_{\beta}}.$$

Togo et al J. Phys. Condens. Matter 35 (2023) 353001

Calculation Tips and Tricks

"Phonons are fussy little buggers" - Dr Adam Jackson, STFC UK

- A very well relaxed structure is a pre-requisite
 - tighten force convergence criteria for structure relaxation (e.g. to $< 0.01 \text{ eV } \text{Å}^{-1}$)

Accurate forces are essential

- converge forces with respect to the basis set, k-point sampling density and SCF criteria
- plane-wave basis: increase cut-off energy by <u>at least 25</u>% above default, up to $2 \times$ may be required.
- numerical atom-centered basis: the default cut-offs tightened by an order of magnitude.

• Avoid interpolation artefacts (imaginary frequencies or flat bands)

• use supercell (finite displacement) or q-point grid (DFPT) commensurate with wavevector

• Make use of the short (or free queue)

• Finite difference consists of several small jobs – possible to be done "for free"

See Pallikara et al 2022 Electron. Struct. 4 033002

Quasi Harmonic Approximation

Quasi-harmonic approximation can be used to model the effects of thermal lattice expansion

- In the harmonic approximation, the lattice parameters are temperature independent, so cannot predict (the effects of) thermal expansion
- At finite temperature, the system will minimise its free energy rather than its lattice internal energy

$$\min\left[E_i^{\text{DFT}} + E_i^{\text{ZP}} + \int_0^T C_p dT + PV - TS_{\text{vib}}(T)\right]$$

 The fit provides equilibrium volume V(T) and the bulk modulus B(T). From this a number of other properties can be derived: Gruneisen $V\beta B_T/C_V$ Entropy $-\left(\frac{\partial G}{\partial T}\right)_p$ Heat capacity $-T\frac{\partial^2 G}{\partial T^2}$

Quasi Harmonic Approximation

Quasi Harmonic Approximation

Pallikara et al., Phys. Chem. Chem. Phys., 2021,23, 19219-19236

Togo et al., Phys. Rev. B **91**, 094306

3-phonon interactions give a finite phonon lifetime which can be used to calculate thermal conductivity

3-phonon interactions give a finite phonon lifetime which can be used to calculate thermal conductivity

Now calculating:

$$\Phi_{\alpha\beta\gamma}(i,j,k) = \frac{\partial^{3}E}{\partial r_{i,\alpha}\partial r_{j,\beta}\partial r_{k,\gamma}} \approx \frac{-F_{i,\alpha}}{\Delta r_{j,\beta}\Delta r_{k,\gamma}}$$

Similar to the harmonic calc BUT

- Many more displacements
- New parameter "cutpair"
- Computationally demanding
 post-processing

Thermal transport

Togo et al., Phys. Rev. B **91**, 094306

Harmonic phonons also give key insights into thermal transport properties

Approximation for defect systems

Moxon et al, J. Mater. Chem. A, 2022, 10, 1861

Physics from Phonons

Various physical observables can be gotten from phonon modes and frequencies

Free Energies

 $(d_{1})^{0}$ $(d_{1})^{0}$ $(d_{2})^{0}$ $(d_{1})^{0}$ $(d_{2})^{0}$ $(d_{2})^{0}$

Crystal structure prediction

Rahim et al. Chem. Sci., 2020,11, 7904-7909

Ruan et al J. Phys. Chem. C 2020, 124, 4, 2265–2272 Jackson et al, Chem. Sci., 2016,7, 1082-1092

Physics from Phonons

Dr Giulia Longo

Case Study: High temperature equilibrium of 3D and Ruddlesden-Popper (Ba_{n+1}Zr_nS_{3n+1}) chalcogenide perovskites

Kayastha et al, Solar RRL (2023) 7: 2201078

 $Ba_4Zr_3S_{10}$ (RP phase)

Primary challenge for chalcogenide perovskites: phase control

"The synthesis is pretty damn hard" - Jonathan Scragg, MRS Fall 2022 BaZrS₃(target)

1) Vibrational spectra
 2) Free Energies

Harmonic phonon spectra \rightarrow

Raman spectra of chalcogenide perovskite

Kayastha et al, Solar RRL (2023) 7: 2201078

300

350

400

381.3

413.

Zr_10

Zr 5

Zr_0

BaZrS.

 $Ba_4Zr_3S_1$

450

500

Calculating Raman spectra

Prakriti Kayastha Poster presentation phonopy + USP / FHI-ains The ab initio materia simulation package

Phonopy-Spectroscopy github.com/skelton-group/Phonopy-Spectroscopy

The Skelton Research Group

First-principles materials modelling and structural dynamics

- Calculate infrared (IR) intensities
- Calculate Raman-activity tensors
- Output simulated spectra
- Include first-principles mode linewidths

Calculating Raman spectra

Kayastha et al, Solar RRL (2023) 7: 2201078

Phonopy-Spectroscopy

github.com/skelton-group/Phonopy-Spectroscopy

- 1) Identify Raman active modes
- 2) Generate displaced structures along each mode3) Calculate dielectric constants for each structure

Prakriti Kayastha Poster presentation

----> database of Raman spectra for all competing phases in Ba-Zr-S system

Thermodynamic Free Energies

See Jackson and Walsh Phys. Rev. B 2013 88, 165201

$$\begin{split} \Delta G = \sum_{i} \Delta n_{i} \mu_{i}. & \text{phonon calcs} \\ \mu_{i}(T,P) = E_{i}^{\text{DFT}} + E_{i}^{\text{ZP}} + \int_{0}^{T} C_{p} dT + PV - TS_{\text{vib}}(T) \end{split}$$

Three degradation processes to RP phases:

 $BaZrS_3 \rightarrow \frac{1}{3} Ba_3Zr_2S_7 + \frac{1}{3} ZrS_2$ [2]

 $BaZrS_3 \rightarrow \frac{1}{2}Ba_2ZrS_4 + \frac{1}{2}ZrS_2$ [3]

Available online: **()** NU-CEM/ThermoPot

 $Ba_3Zr_2S_7$ and $Ba_4Zr_3S_{10}$ are energetically accessible during synthesis at high T
First-principles Lattice Dynamics

Presentation and example files available here: http://github.com/nu-CEM/phonons_tutorial/

Dr Giulia Longo Northumbria Experimental characterization BaZrS3

Prakriti Kayastha Ab-initio calcs BaZrS3 Poster presentation

Dr Jonathan Skelton Uni. Manchester Phonopyspectroscopy

Dr Adam Jackson STFC Ab-initio Thermodynamics

Dr Lucy Whalley

Northumbria University, Newcastle upon Tyne, United Kingdom

Help! I have imaginary modes

Dunding instability

Origin of imaginary mode

Inadequately relaxed structure Inadequately converged technical parameters

Broken translational symmetry

Interpolation artefacts

Strongly correlated electrons

Spin-phonon coupling

Dynamic instability (Γ wavevector)

Dynamic instability (off- Γ wavevector, typically a zoneboundary point)

Dynamic instability in a defective structure

Solution

Tighten force convergence criteria (e.g. to $eV Å^{-1}$) Converge forces with respect to the basis set, **k**-point sampling density and SCF convergence criteria Increase the size of the density grids and/or enforce the acoustic sum rule as a post-hoc correction For finite-difference calculations, select supercells commensurate with the wavevector where the imaginary mode is found (consider using non-diagonal supercells if needed). For DFPT calculations, ensure the q-point grid includes the wavevector Use a suitable exchange-correlation functional for DFT calculations (e.g. DFT + U or a hybrid functional), or a suitable alternative theory (e.g. dynamical mean field theory) to calculate forces Include the effects of spin and spin-orbit coupling in calculations Use phonon mode-mapping to locate lower-energy structure along imaginary mode Ensure point is commensurate with supercell (finitedifferences) or included in the **q**-point sampling grid DFPT, then use mode-mapping as for Γ-point imaginary modes Use mode mapping or break crystal symmetry to allow for localised distortions during geometry optimisation

Final Note: Reproducible science

Jupyter Notebooks as SI Adam Jackson Repo Publishing Data Zenodo DOIs

Ab-initio p

rials

i. Defect properties are difficult to measure

Futscher and Deibel, ACS Energy Lett. 2022, 7, 1, 140–144

The ionic response can dominate over the electronic response *Caution when interpreting e.g. DLTS*