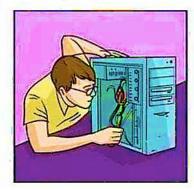
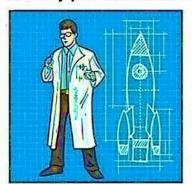
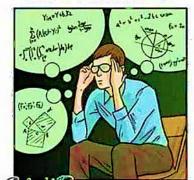
# "I can't code" and other reproducibility-blockers


#### **Dr Lucy Whalley**


Assistant Professor in Physics, Northumbria University Associate Editor, Journal of Open Source Software

I.whalley@northumbria.ac.uk lucydot.github.io


#### A programmer

What people think I do What my parents think I do





What I think I do

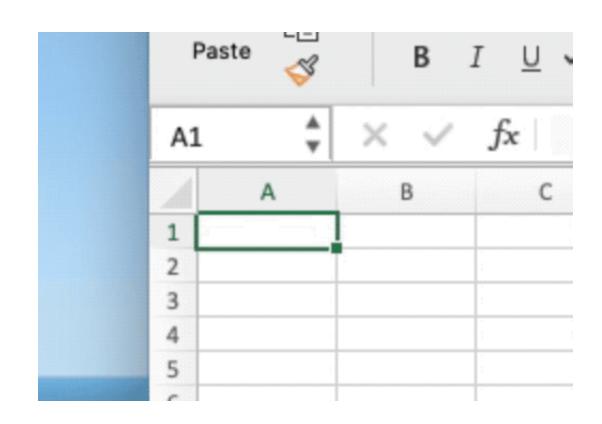


What I really do



# Good research is reproducible research




**Ingredients** (data)



Recipe (methods)



# Researchers make errors



Error loading a spin-polarised calculation #7

**⊘ Closed** ajjackson opened this issue on Jul 23, 2018 · 11 comments

ajjackson commented on Jul 23, 2018

I ran an LDA band structure for MgO. With no spin enabled it reads in ok, but when I se structure effmass seems to have trouble reading the files.

Are spin-polarized calculations supported? I see that effmass.inputs.Data has an att channels, but I get an error while the object is being instantiated.

spin\_test.zip

(<u>U</u>

19.6% of genetic research crunched in excel contains errors<sup>1</sup>

My research code contains errors

# Computational reproducibility

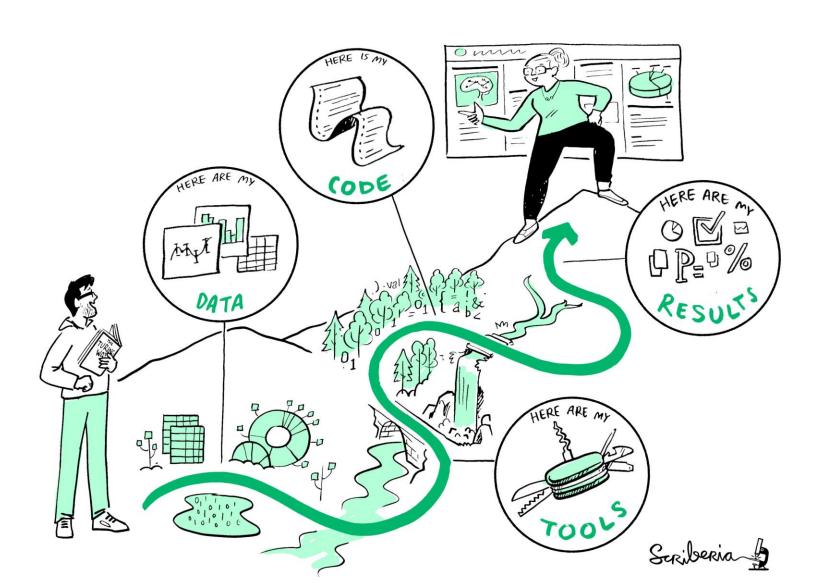
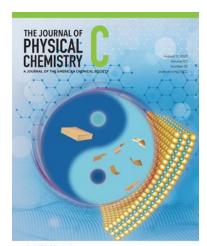




Image from The Turing Way<sup>2</sup>

# Our Approach

# 1. Journal Article<sup>3</sup>



# 2. Project-specific repository<sup>4</sup>

Data and analysis code for "Steric Engineering of Point Defects in Lead Halide Perovskites"

■ This paper is published with open access in J. Phys. Chem. C here.

All of the code is distributed as <u>Jupyter Notebooks</u>. If you are looking for the code that implements the interpolation method used in the paper, please see <u>this repository</u>. If you are looking for raw DFT input and output files for the total energy calculations used to predict defect properties, please see <u>this repository</u>.

# 3. Domain-specific data repository<sup>5</sup>

#### 4. Pre-print<sup>6</sup>

#### NOMAD

### Materials science data managed and shared

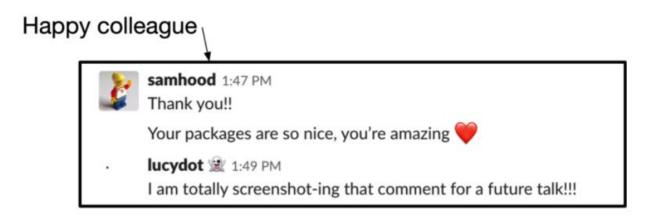
NOMAD lets you manage and share your materials science data in a way that makes it truly useful to you, your group, and the community. **Free and open source.** 

Open NOMAD →



# Our Approach

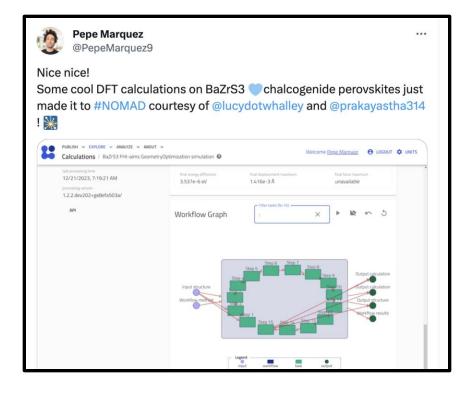
# Project-specific repository




```
Raw [□ ± 0 +
               Blame 191 lines (191 loc) · 75.4 KB
         Symmetry Mode Analysis
In [8]:
          import numpy as np
          import csv
          import re
          import matplotlib
          import matplotlib.pyplot as plt
          from collections import OrderedDict
In [20]:
          def get data(filepath, cutoff):
              with open(filepath) as File:
                  content = File.read()
              label = re.findall('Pm-3m\[\d*\/?\d*,\d*\/?\d*,\d*\\?\d*\]([A-Z]*\d*[+-?])',c
              label content = re.findal1('Pm-3m\[\d*\/?\d*,\d*\/?\d*,\d*\/?\d*\]([\s\S]*?)\
              totals = []
              for content in label content:
                  decimals = re.findall('(-?\d+\.\d+)',content)
                  totals.append(sum([abs(float(entry)) for entry in decimals]))
              data = {label[i]: totals[i] for i in range(len(label))}
              data = OrderedDict(filter(lambda data: data[1] > cutoff ,data.items()))
              data = OrderedDict(sorted(data.items(), key=lambda data: data[1],reverse=True
              return data
          def plot data(data,amp):
              plt.style.use('seaborn-colorblind')
              plt.figure(figsize=(20,10))
              plt.bar(range(len(amp)), amp, align='center')
              plt.xticks(range(len(amp)), list(data.keys()),fontsize=20)
              matplotlib.rc('xtick', labelsize=20)
              matplotlib.rc('ytick', labelsize=20)
              plt.ylabel("Mode amplitude", fontsize=20)
              plt.axis(ymin=0,ymax=2.2)
              plt.show()
          # all phonon modes with amplitude below this cutoff will not be plotted
```



+ zenodo


Jupyter Notebook to map from Data to Code



#### Big person in the field



Little person in the field



# Reproducibility-blockers

For most of the papers, there was little to provide any help to a researcher willing to reproduce the calculations... the input files were not provided.<sup>7</sup>

Time pressures

Lack of incentives

Fear of scooping






"I can't code"



Sensitive data



# Coding has an image problem





### Women invented programming



Ada Lovelace wrote the first computer programme



Grace Hopper invented the first compiler

### Women were the first programmers



**1969**: 'Space age needleworker "weaves" core rope memory for [Apollo missions'] computers.' (Raytheon, 1969, p. 18)



1962: Mathematicians and programmers, Patsy Simmers, Gail Taylor, Milly Beck, Norma Stec, holding parts of the first computers.



c. 1972: African-American woman computer operator at the Office of Personnel Management.



**1969**: Margaret Hamilton with the code she and her staff wrote for the Apollo 11 mission.

Teaching coding inclusively: if this, then what?

Olivia Guest<sup>1</sup> and Samuel H. Forbes<sup>2</sup>

### What happened in the 1980s?

#### **What Happened To Women In Computer Science?**

% Of Women Majors, By Field

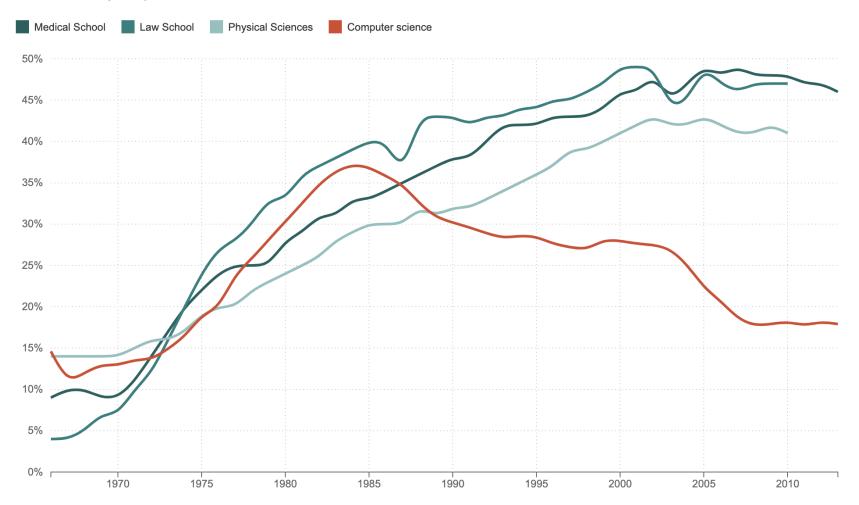
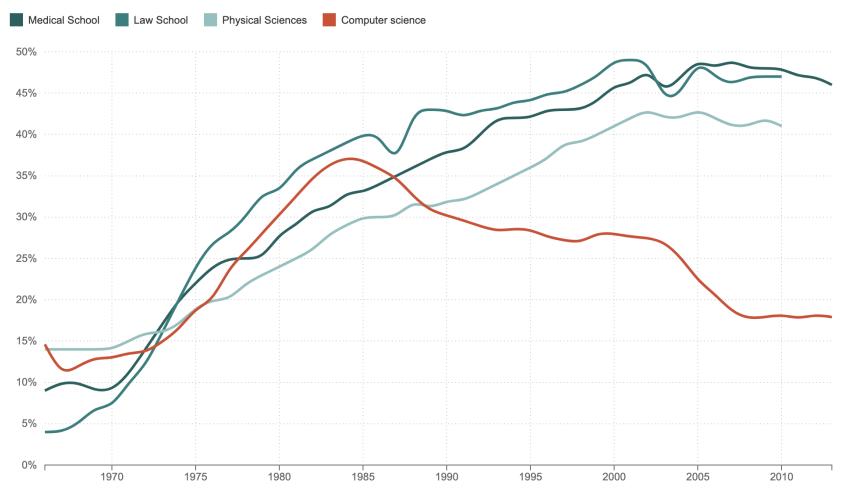




Image from NPR Planet Money "When women stopped programming"

# What happened in the 1980s?

#### What Happened To Women In Computer Science?

% Of Women Majors, By Field





VISIT TECHNICO AT THE PHILADELPHIA PER COMP '78 SHOW - BOOTHS 639 & 641

### Changing (student) attitudes

"I can't code"

→ like any other skill coding takes practice, and you *will* generate a lot of errors on the way

"I am too old to learn to code"

→ there is no critical developmental window for learning to code

"If we learn to code we will not have time to learn X"

→ Coding is an increasingly *necessary* part of research

Teaching coding inclusively: if this, then what?

# **Communities of support**



We teach foundational coding and data science skills to researchers worldwide.

For those new to programming

For career advice





Software Sustainability Institute

For reaching the wider community

Northumbria specific



# Contribution takes many forms



### Summary

- 1) Good research is reproducible
- 2) Join the "Research Computing Community" for further discussion
- 3) Jupyter Notebooks are a useful tool
- 4) Computing has an image problem: think about building confidence
- 5) Code contributions do not need to be technical

#### References

- 1) Gene name errors in Excel: <a href="https://doi.org/10.1186/s13059-016-1044-7">https://doi.org/10.1186/s13059-016-1044-7</a>
- 2) The Turing Way: <a href="https://the-turing-way.netlify.app/index.html">https://the-turing-way.netlify.app/index.html</a>
- 3) Steric engineering journal article: <a href="https://doi.org/10.1021/acs.jpcc.3c03516">https://doi.org/10.1021/acs.jpcc.3c03516</a>
- 4) Steric engineering project repository: <a href="https://github.com/NU-CEM/MACsPbI3\_defects">https://github.com/NU-CEM/MACsPbI3\_defects</a>
- 5) Steric engineering NoMaD dataset: <a href="https://dx.doi.org/10.17172/NOMAD/2023.12.21-1">https://dx.doi.org/10.17172/NOMAD/2023.12.21-1</a>
- 6) Steric engineering pre-print: <a href="https://arxiv.org/abs/2302.08412">https://arxiv.org/abs/2302.08412</a>
- 7) Reproducibility in computational chem: <a href="https://doi.org/10.1021/acs.chemmater.7b00799">https://doi.org/10.1021/acs.chemmater.7b00799</a>

### **Further Reading**

- 1) The Turing Way: <a href="https://the-turing-way.netlify.app/index.html">https://the-turing-way.netlify.app/index.html</a>
- 2) Teaching coding inclusively: <a href="https://osf.io/preprints/socarxiv/3r2ez">https://osf.io/preprints/socarxiv/3r2ez</a>