

Perovskite materials: defects and dynamics

Dr Lucy Whalley

Assistant Professor in Physics Northumbria University, United Kingdom

Materials Modelling: what role can it play?

"Theoretical materials science and technology has several levels, and also several roles. It provides a framework in which to organize empirical results. It can be used to scope a new field. It can be used to separate out the components of some complex system, where experiment alone still confuses. And one can imagine cases—especially for the shortest or the longest timescales—where theory can outreach experiment."

Marshall Stoneham Defects in semiconductors and oxides: where are the gaps in first principles theory? (2009)

Components in a complex system

Non-radiative carrier capture electronic excitation \rightarrow thermal energy

1. Halide perovskites defects and dynamics \rightarrow non-radiative processes

2. Chalcogenide perovskites – lattice and molecular dynamics \rightarrow phase stability

Predicting PV device performance

Kim, Marquez, Unold and Walsh, Energy Environ. Sci., 2020,13, 1481-1491

Quantum mechanical prediction of the capture coefficient C

Whalley et al., J. Am. Chem. Soc. 2021, 143, 9123-9128

Semi-classical C determined by energy barrier (ΔQ, ΔΕ, PES curvature) Quantum mechanical C determined by Fermi's golden rule

$$C = V \frac{2\pi}{\hbar} g W_{if}^2 \sum_m \Theta_m \sum_n |\langle \chi_{im} | \Delta Q | \chi_{fn} \rangle|^2$$
$$\times \delta(\Delta E + m\hbar\omega_i - n\hbar\omega_f)$$

Large lattice relaxation leads to benign defects

Whalley et al., *J. Am. Chem. Soc.* 2021, 143, 9123–9128

Cs incorporation suppresses lattice relaxation

Whalley, J. Chem. Phys. C 2023, 127 (32), 15738-15746

MA_{1-x}Cs_xPbI: Volume reduction through octahedral tilting

Whalley, J. Chem. Phys. C 2023, 127 (32), 15738-15746

The iodine interstitial can display a range of defect activity

1. Halide perovskites defects and dynamics \rightarrow non-radiative processes

2. Chalcogenide perovskites lattice and molecular dynamics \rightarrow phase stability

BaZrS₃ (BZS): a tantalizing material

- Abundant and non-toxic
- Stable in air to 400°C
- Strong light absorption
- 1.8eV band gap \rightarrow tandem PV
- Tunable E_g through S/Se or Zr/Hf mixing
- Low thermal conductivity

(1.84 W/mK @ 300 K)

Challenge: moderate temperature synthesis

Free energy predictions

1. DFT + harmonic lattice dynamics

2. Comprehensive approach

 $\begin{array}{l} BaZrS_3 \rightarrow Ba + Zr + 3S(s) \\ BaZrS_3 \rightarrow BaS + ZrS_2 \\ 3BaZrS_3 \rightarrow Ba_3Zr_2S_7 + ZrS_2 \end{array}$

3. Analytic chemical potential for S_x vapour

Jackson, Tiana and Walsh, Chem. Sci., 2016,7, 1082-1092

P. Kayastha, G. Longo, L. Whalley ACS Applied Energy Materials, **2024** 10.1021/acsaem.3c03208

BaZrS₃ formation from ZrS₃

Problem: If the partial pressure of sulfur is too high during annealing, ZrS_3 forms and limits perovskite formation.

Conclusion: $BaZrS_3$ is stable relative to ZrS_3 . Any limitations are kinetic.

Paper in prep.

Phase diagram for Ba-S system

High sulfur pressures (>10³ Pa at 500 °C) are required to form BaS₃.

Perovskite polymorphs

Group-Theoretical Analysis of Octahedral Tilting in Perovskites C. J. Howard and H. T. Stokes

Neuroevolution Potential (NEP)

Fan *et al* Phys. Rev. B **2021**, 104, 104309

Paper in prep.

BaZrS₃ phase diagram

Calculated through NEP-MD and thermodynamic integration

Outstanding challenges for BaZrS₃ development

- 1) Formation of ZrO_x phases during synthesis
- 2) Ruddlesden Popper phase formation
- 3) Lack of PL: identifying recombination pathways
- 4) Impact of perovskite polymorphs on thermal transport
- 5) Characterization and control of sulfur vapour

Collaborators

Northumbria University NEWCASTLE

Prakriti Kayastha

Paul Erhart

Erik Fransson

CHALMERS

UPPSALA UNIVERSITET

Jonathan Scragg Corrado Comparotto Kostya Sopiha

Giulia Longo

Thank you

Lucy Whalley I.whalley@northumbria.ac.uk

