Fighting Climate Change with Quantum Mechanics

Dr Lucy Whalley

Assistant Professor in Physics Northumbria University

I.whalley@northumbria.ac.uk Website: lucydot.github.io

Schrödinger equation [1925] $\widehat{H}\Psi = E\Psi$

.... the exact applications of these [quantum mechanical] laws lead to equations much too complicated to be soluble.

Quantum mechanics of many-electron systems Paul Dirac, 1929

)

1950s: Quantum Breakthrough! Density Functional Theory

21st Century: Quantum Breakthrough! Supercomputing

Installation of the UK Supercomputer "Archer2" 750,000 compute cores

In Silico materials modelling

))

In Silico materials design

New material! YZrF7

()

"The era of global boiling has arrived"

[Antonio Guterres, UN secretary general]

We need new materials for energy conversion and storage

More efficient solar cells

Energy dense batteries

Lighter wind-turbine blades

Perovskite: a super-material for solar cells?

CaTiO₃ inorganic 1839

$CH_3NH_3PbI_3$

organic and inorganic 2009

Perovskite: a record-breaking material

a-Si:H (i) a-Si:H (p

ZnO:A

Silicon only \rightarrow Perovskite on silicon

 $29\% \rightarrow 33\%$

Singing Materials

Courtsey Dr Jarvist Frost, Imperial College London

Thanks for listening to me and my materials

Dr Lucy Whalley

I.whalley@northumbria.ac.uk Website: lucydot.github.io

