
UNIX	TEACHING	OUTLINE	
	
Place:		CDT	space	402	
Time:	10	am	
Helpers:	Katerina	and	Jazz	
	
Remember:	split	screen	with	big	text	/	encourage	stickies	/	explain-type-repeat	/	write	commands	up	/	
do	sketches	/	don’t	use	the	word	‘just’	/	normalise	errors	/	work	in	pairs	
	
INTRODUCTIONS()							(15	minutes)	

o Arrange	so	sitting	in	pairs	for	pair	programming	
o Show	PPT	(motivation,	outline,	key	definitions)	

o Hi,	I’m	Lucy	and	I’m	a	PhD	student	here	at	Imperial	and	I	model	–	using	computers	–	the	
behavoiur	of	electrons	in	materials.	I	first	started	using	Unix	about	ten	years	ago,	as	an	
undergraduate,	and	during	my	PhD	I’ve	used	it	every	day.	I	find	it	extremely	useful	for	my	
work	–	we’ll	come	back	to	that	later.	First	I’d	like	to	introduce	Katerina	and	Mack	who	are	the	
helpers	for	this	lessson.	They	will	be	floating	around,	looking	over	your	shoulder,	they	are	
not	trying	to	read	your	personal	emails,	they	just	want	to	check	I’ve	got	the	pace	right,	that	
I’m	not	going	to	fast	and	leaving	people	behind.	Please	help	them	by	using	the	stickies.	

o So	why	should	we	learn	the	Unix	shell?	Well	it	can	be	used	to	automate	repetative	tasks	
-	Many	of	us	in	the	course	of	our	research	will	be	asked	to	do	the	same	piece	of	analysis	on	
similar	data	sets.	Manually	repeating	the	same	task	many	times	is	in	the	most	part,	not	an	
efficient	use	of	time,	it	can	also	lead	to	silly	mistakes.	For	example,	you	may	be	a	marine	
biologist	who	has	collected	data	on	800	different	samples	of	seaweed.	You	need	to	run	this	
data	through	an	analysis	programme	your	superivosr	has	written.	This	prgramme	takes	ten	
minutes	to	run.	So	you	start	the	programme,	wait	ten	minutes,	start	it	again	on	the	next	ten	
minutes,	wait	ten	minutes…it’s	going	to	take	a	long	time.	Using	the	Unix	shell	you	could	write	
something	called	a	loop,	which	we	will	cover	today,	and	the	process	will	be	repeated	for	each	
sample	without	you	doing	each	one	manually.	
-	Make	your	science	more	easily	reproducible.	We	will	look	at	something	called	shell	
scripting,	this	is	where	you	save	the	commands	you	have	used	in	a	file	for	later	use.	So	if	
someone	asks,	how	did	you	manipulate	the	data	in	those	files	to	get	to	that	result,	you	can	
hand	over	your	scripts,	and	the	steps	you	took	are	contained	in	there.	
-	Supercomputers	are	very	large,	powerful	computers	which	are	most	often,	away	from	the	
site	you	are	physcially	working.	Imperial	has	supercomputers	in	??,	the	UK	national	
supercomputer	Archer	is	based	in	Edinburgh,	I’ve	even	used	a	supercomputer	called	SiSu	in	
Finland.	You	communicate	with	these	supercomputers	using	Unix	shell	commands.	So	if	you	
think	you	might	want	to	use	HPC	in	the	future,	then	you	will	need	to	know	the	basics	of	Unix	
shell.	

o Finally,	and	this	is	what	got	my	into	computing	in	the	first	place,	you	can	use	the	unix	shell	to	
feel	like	a	Hacker.	Who	has	seen	this	film		-	Hackers?	Brilliant	film,	made	in	1995,featuring	
angelina	and	tommy	lee	milller	as	teenage	hackers,	using,	of	course	the	unix	shell	for	their	
hacking.	So	if,	like	me,	you	think	this	kind	of	thing	is	cool,	then	you	should	learn	the	unix	
shell.	

o 14	commands	this	morning–	it’s	a	manageable	amount,	Building	computer	skills	takes	time,	
we	cannot	teach	you	the	whole	of	the	Unix	shell	in	a	half	day.	We	are	not	trying	to	teach	you	
everything	but	I	do	want	to	achieve	two	things:	I	would	like	you	to	walk	away	with	at	least	
one	command	or	group	of	commands	that	would	be	useful	for	speeding	up	your	workflow,	
and	I’d	like	you	to	have	the	Confidence	to	learn	more	about	this	in	your	own	time.	

o First	I’d	like	to	outline	some	key	vocab.	Unix	is	a	type	of	operating	system	–	like	the	Windows	
operating	system	that	you	might	use.	If	you	are	using	Mac,	you	are	using	a	Unix	operating	system.	
-	The	Unix	shell,	which	we	are	learning	about	today,		is	a	command	line	interface	to	the	Unix	
system.	Command	line	because	there	is	no	graphical	user	interface	like	when	you	run	word	,	to	
use	this	interface	we	type	commands.		By	typing	commands	we	get	it	to	run	built	in	programmes.	
-	A	number	of	different	unix	shells	have	been	developed,	the	one	we	are	using,	which	is	the	most	
popular	is	called	the	bash	shell.	I	tend	to	use	the	bash	and	unix	interchangeably	for	this	reason.		
-	A	terminal	is	the	programme	you	open	on	your	computer	which	runs	the	shell.	
-	The	prompt	–	known	as	command	prompt	–	is	this	ending	in	the	dollar	sign.	It	marks	the	
beginning	of	the	command	line.	

MAIN()							(2	hours	10min	+	30min	break)	
	

o Part	one:	Introducing	the	shell	(10	minutes)	
o (open	up	Terminal)	So	I	click	on	the	terminal	icon	and	this	gives	me	access	the	Unix	

shell.		Can	everyone	open	up	their	shell?	Stickie	when	you	are	done.	
o We	are	going	to	use	Live	coding.	So	I	type	in	my	screen,	and	you	follow	

	

$ ls –F /

	
o 3	part:	command,	flag	and	arguments.		(Draw	on	board	the	3	parts)	The	command	

corresponds	to	a	short	programme,	in	this	case	it	is	the	ls	programme.	The	flag	adjusts	
the	behaviour	of	the	programme	and	the	argument	tells	the	command	what	to	operate	
on.	

o When	you	are	typing	terminal	commands	you	must	copy	things	exactly	–	spaces	are	
important,	capitalization	is	important.	Lower	case	is	not	equivalent	to	upper	case.	

o After	each	terminal	command	you	press	return	and	the	shell	will	evaluate	it,	print	the	
results	to	the	screen,	then	when	it	is	ready	for	the	next	command	it	will	give	you	the	
prompt	again.	That	tells	you	it	is	waiting	for	the	next	input.	

o Ls	is	the	list	programme	which	lists	the	contents	of	a	directory	(directory	=	folder).	The	–
F	flag	tells	it	to	give	me	a	bit	more	information	about	directory	contents.	So	it	puts	a	
slash	after	each	entry	which	is	a	directory.	If	I	do	it	without,	it	doesn’t	give	me	the	
slashes	

$ ls /

o The	argument	is	a	forward	slash.	This	is	used	to	denote	the	root	directory	of	my	
computer.	(Draw	on	the	board	the	root	and	it’s	sub	directories)	The	root	directory	holds	
everything	else.	We	refer	to	it	using	a	slash.		Bin=binaries,	where	programmes	are	
stored,	tmp	is	short	for	temporary	it	is	for	temporary	files	the	computer	does	not	need	to	
store	long	term.	Users	contains	the	personal	directories	for	each	user,	and	as	users	this	is	
where	we	spend	most	of	our	time.		

o What	happens	if	we	type	something	incorrectly?	

$ ls–F /

o (Write	ls	onto	the	commands	list)	
	

o Part	two:	Navigating	directories	(15	minutes	+10	minutes	tasks)	
o Let’s	find	out	where	we	are	sitting	in	the	directory	structure.	We	do	this	using	the	

command	pwd.	
	

$ pwd

o The	computer	tells	us	we	are	sitting	in	/Users/learner	
o (Draw	diagram)	So	we	are	sitting	here	in	the	learners	directory	which	is	itself	in	the	

Users	directory	
o For	every	command	there	is	a	built-in	help	page	you	can	access	using	the	command	

	
$ man pwd

o We	can	move	up	and	down	this	page	using	the	up	and	down	keys.	Q	to	exit.	
o If	we	use	ls	without	an	argument	it	will	list	the	contents	of	our	current	directory	

$ ls

o What	command	could	we	use	to	list	the	contents	of	the	Desktop	directory?	Ls	Desktop	

o Now	the	third	command	for	this	section:	cd.		It	is	short	for	change	directory.	So	if	I	want	
to	move	into	my	desktop	I	would	use		

$ cd Desktop

$ pwd # I’m in the right place

o We	need	to	download	some	files	for	the	workshop	today.	I’m	going	to	show	you	how	to	
do	this	using	the	command	curl.	Is	everyone	sitting	in	their	desktop?	Good.	

$ curl –O https://swcarpentry.github.io/shell-novice/data/data-shell.zip

o This	is	the	longest	thing	you	will	need	to	type	today!	
o Go	to	your	Finder	window	and	you	should	see	the	zip	file.	Unzip	the	file	(in	Mac	I	think	

you	can	double	click)	then	go	back	to	the	terminal.	Now	you	should	see	the	folder	in	
there	(Add	to	drawing)	

$ ls -F

o I	can	see	what	is	in	this	folder	(Add	to	drawing)	

$ ls data-shell

o And	what	is	contained	within	data		

$ ls data-shell/data

o And	if	I	wanted	to	move	into	this	directory	I	could	use	

$ cd data-shell/data

o We	are	now	sitting	in	data.		How	about	if	we	want	to	go	up,	into	data-shell?	

$ cd data-shell # doesn’t work

$ cd ..

o This	command	always	moves	us	up	one	directory	–	to	the	parent	of	the	current	
o If	we	run	ls	we	don’t	see	it	as	an	option.	That	is	because	it	is	a	hidden	file.	To	see	hidden	

files	we	need	to	run	ls	with	the	–a	short	for	all	flag	

$ ls –a

$ ls –F –a # I can combine flags

$ ls –Fa # Or we can combine like this

o If	we	type	cd	without	an	argument	what	happens?	

$ cd

$ pwd # we can find out with pwd – it takes us to our home directory

$ cd /Users/learner/Desktop/data-shell # TAB COMPLETION to go back to our project

o Fab,	we	have	covered	the	three	commands	cd,	pwd	and	ls	
o Now	I’d	like	you	to	go	to	the	website	https://swcarpentry.github.io/shell-novice	.	This	

contains	all	the	resources	for	today.	Go	to	episode	x	,	read	this	section	and	do	the	three	
exercises	in	paris:	you	have	ten	minutes.	

o We	have	covered	how	to	navigate	through	our	computer	using	cd,	pwd	and	ls.		
o What	questions	do	you	have	on	this?	
o Now	lets	look	at	creating	and	moving	files	and	directories.	

	
	
	

o Part	three:	Creating	and	editing	files	and	directories	(15	minutes	+	10	minutes	tasks)	
o Let’s	check	that	we	are	in	the	correct	place	

$ pwd

$ ls # and see what it contains

o I	want	to	create	a	directory	called	thesis.	I	use	the	command	

$ mkdir thesis

o (Draw	on	diagram)		This	is	a	relative	path	because	it	does	not	have	a	leading	slash.	So	it	
is	made	relative	to	our	current	position,	it’s	made	in	the	directory	we	are	currently	
sitting	in.	

o Note	that	when	you’re	working	with	unix,	it	is	much	easier	if	file	and	directory	names	do	
not	have	any	whitespace.	Stick	with	letters,	dash	and	underscore.	(on	board)(new	
command)	

o Let’s	move	into	the	thesis	folder	and	create	a	file	

$ cd thesis

$ nano draft.txt #

o Nano	is	a	command	which	opens	up	the	nano	text	editor,	there	are	plenty	of	other	
editors	but	we	use	nano	as	it	is	one	of	the	most	accessible	ones	

o As	you	can	see,	it	looks	nothing	like	word!	It	really	is	just	a	text	editor.	

Trust your technolust

Hack the planet # These are quotes from Hackers

o Ctrl-o	to		save,	return	to	accept,	ctrl	X	to	leave	
o Is	everyone	happy?	
o My	thesis	probably	shouldn’t	be	based	around	quotes	from	Hackers,	so	I’ll	delete	this	

draft	using	the	comman	

$ ls

$ rm draft.txt

$ ls # And it’s gone. WARNING this is forever (no rubbish bin)

o Now	I’ll	move	back	into	the	data-shell	directory	and	try	to	remove	the	thesis	directory	

$ cd ..

$ rm thesis

$ rm –r thesis # need to use –r for recurring when deleting a directory

$ mkdir thesis # let’s make it again

$ rm –r –I thesis # this is a safer way of doing it – interactively.

o Let’s	create	the	file	and	directory	one	more	time.		

$ pwd

$ mkdir thesis

$ nano thesis/draft.txt # note we’re running nano with path thesis/draft rather than cd thesis

“With great power comes great responsibility”

$ ls thesis

o Say	I	want	to	change	the	name	from	draft.txt	to	quotes.txt	then	I	use	(write	on	board)	
	

$ mv thesis/draft.txt thesis/quotes.txt

$ ls thesis

$ mv thesis/quotes.txt . # . is a special name for the directory we are currently in

$ ls thesis

$ ls

o Again,	you	need	to	careful	as	mv	is	DANGEROUS.	If	you	had	another	file	called	quotes.txt,	it	
would	overwrite	this	file.	

o If	I	want	to	copy	my	file	quotes.txt	I	use	(write	on	board)	

$ cp quotes.txt thesis/quotations.txt

$ ls

$ ls thesis

o We	have	now	went	through	the	commands	for	creating	/	moving	and	copying	files.	Go	to	the	
website	and	read	this,	then	discuss	with	your	partners	the	questions	below.	Do	as	many	as	
you	can	in	10	minutes.	
	

o Part	four:	combining	commands	(15	minutes	+	10	minutes	activities)	
o What	questions	do	you	have	from	the	previous	section?	
o Ok,	this	is	the	final	section	before	coffee	break	and	we	are	getting	on	to	the	good	stuff.		

This	is	where	unix	gets	powerful,	because	it	lets	you	chain	together	lots	of	simple	
commands	to	make	a	powerful	programme.		

	

$ pwd # you should be in data-shell

$ cd molecules

$ ls

$ wc *.pdb

o Wc	is	word	count	and	the	asterix	is	a	wildcard.	It	means	match	all	files	that		end	in	.pdb	

$ wc –l *.pdb

o This	now	shows	the	number	of	lines	per	file.	Which	file	is	the	shortest?	Easy	when	we	
have	six	files,	but	what	if	we	had	6000	files?	

o First	step	would	be	run	this	command	

$ wc –l *.pdb > lengths.txt

o Normally	this	command	would	output	to	our	screen	like	we	saw	before.	But	this	time	it	
redirects		the	output	to	the	file	lengths.txt		DANGER	could	overwrite.		

o We	can	see	what	lengths.txt	contains	using	the	command	cat	which	is	short	for	concatenate.	
It	prints	the	contents	of	one	file	to	another.	Here	I	only	have	one	filename	so	it	prints	the	fie	
to	the	screen.	

$ cat lengths.txt

o Now	we	can	sort	the	contents	of	this	file	using	the	command	sort	(write	it	up)	

$ sort –n lengths.txt

o –n	to	sort	numerically.	This	does	not	change	the	contents	of	the	file.	
o We	can	pipe	the	output	into	another	file	sorted-lengths.txt	

	

$ sort –n lengths.txt > sorted-lengths.txt

o And	if	we	want	to	look	at	the	top	line	of	this	file		

$ head –n 1 sorted-lengths.txt

o (write	it	up)	Or	we	can	look	at	the	top	3	lines	using	

$ head –n 3 sorted-lengths.txt # TAB COMPLETION

o Now	we	could	do	this	process	for	20,000	files	to	find	the	shortest	one	quickly.	We	have	
created	this	file	“sorted-lengths.txt”	which	we	don’t	really	need.	We	can	remove	it	from	our	
workflow	by	using	a	pipe	

$ sort –n lengths.txt | head –n 1

o The	output	of	the	command	on	the	length	is	the	input	of	the	command	on	the	righted	
o What	about	getting	rid	of	this	intermediate	file	lengths.txt?	To	create	that	we	used	

$ wc –l *.pdb | sort -n

o Instead	of	redirecting	this	to	a	file	we	can	pipe	it	to	sort	–n.	
o We	could	pipe	this	output	to	another	command	head.	So	the	full	workflow	for	finding	the	

longest	file	in	a	directory	would	be	

$ wc –l *.pdb | sort –n | head –n 1

o If	you	are	finding	it	hard	to	understand	what	is	happening	here,	it	might	be	easier	to	think	of	
it	using	mathematical	notation:	
Similar	to	log(3X)	where	you	would	multiply	x	by	3	then	take	the	log	
Head	–n	1(sort	–n(wc	–l	*.pdb)))	:	we	are	doing	the	inner	bracket	first	then	this	is	input	for	
the	next	function	and	so	on…	

o Now	I’ve	only	shown	you	a	handful	of	commands	but	can	you	imagine	how	powerful	it	is	as	
you	learn	more	and	more	commands	and	combine	them	in	this	way?	

o This	way	of	approaching	programming	is	called	modular.	Where	a	complex	programme	is	
built	from	lots	of	smaller,	simple	units.		It	is	the	key	to	the	success	of	Unix,	that	it	was	built	in	
this	way.	This	type	of	modular	programming	can	be	very	effective	and	it	is	something	I	
always	aim	for	when	I	am	writing	a	programme	in	other	languages	like	Python	for	example.	

o Ok	those	are	all	of	the	commands.	I	would	like	to	finish	this	section	with	you	and	your	
partner	to	discuss	the	answer	to	“Pipe	reading	comprehension”	.	Write	what	you	think	
final.txt	will	contain	.	You	have	three	minutes.	

o Discuss	.	What	questions?	then	coffee	
	

	
o Part	five:	Repeating	commands	with	loops	(15	minutes	+	10	minutes)	

o We	are	now	going	to	learn	about	loops.	Loops	allow	us	to	repeat	the	same	command	
many	times	over.	For	this	section	we	are	going	to	work	in	the	creatures	directory	

	

$ pwd

$ cd # remember if you are lost you can cd to you home directory.

$ cd Desktop/data-shell # then from there you can find the right place

$ cd creatures

$ ls # there are two creatures in there

o We	want	to	modif	y	these	files	and	keep	a	version	of	the	original.	For	two	files,	we	could	
do	it	by	hand.	But	what	if	we	had	50?	It	starts	taking	a	long	time…we	could	try	

$ cp .dat original-*.data

o But	that	doesn’t	work	because	it	expands	as	(write	on	board)	and	when	cp	has	more	than	2	
arguments	it	expects	the	last	to	be	a	directory	it	can	copy	all	the	files	to.	

o Instead	we	can	use	a	loop	(on	the	board).	Here	is	an	example	loop.	

$ for filename in basilisk.dat unicorn.dat

> do

> head –n 3 $filename

> done

o Indentation	not	necessary	but	good	for	readability	
o For	tells	tells	the	shell	to	repeat	the	comman	between	do	and	done	
o In	this	case	it	will	be	repeated	twice:	once	for	basilisk.dat	and	once	for	unicorn.	Dat	
o The	first	time	it	will	run	….the	second	time	it	will	run	…..	
o Filename	is	what	I	call	a	dummy	variable.	It	doesn’t	matter	what	its	called	as	long	as	it	is	the	

same	here	and	here.	I	could	replace	it	with	x	(demonstrate).	
o The	dollar	sign	is	important	as	it	tells	the	shell	that	filename	is	a	variable	and	that	it	needs	to	

substitute	a	value	in	it’s	place	
o So	this	is	all	exactly	equivalent	to	(write	it	up)	but	for	a	1000	files	would	be	infinitely	quicker.	
o Lets	type	it	in	

$ Type the above in

o See	the	more	than	sign.	The	shell	is	telling	us	it	is	expecting	more	input	before	it	evaluates	
the	command.	

o The	output	is	as	expected	
o Write	on	board	We	don’t	need	to	write	this	as	separate	lines	,	we	could	write	it	as	

$ for filename in basilisk.dat unicorn.dat ; do head –n 3 $filename; done

o They	are	exactly	equivalent.	Multi-line	commands	can	be	separated	with	a	semicolon	instead	

$ Type the above in

o Challenge:	who	can	tell	me	what	the	following	loop	can	do?	Feel	free	to	discuss	with	your	
partner.	I	want	you	to	work	it	out	without	running	the	code	–	you	can	use	the	built	in	help	
though.	

$ for filename in *.dat

$ do

$ echo $filename

$ head -n 100 $filename | tail -n 20

$ done

(it will give lines 81 to 100 of each file)

o We	haven’t	discussed	the	command	tail	yet	but	remember	you	can	use	

$ man tail

$ man echo

o Now	a	challenge	for	you	and	your	partner.	Remember	the	original	task	–	write	a	loop	which	
copies	each	filename.dat	orig-filename.dat	.		check	you	have	done	it	with	the	ls	command.	
Once	you	have	finished	then	put	green	stickie	so	I	know	we	can	move	on.	

o We	have	finished	the	loops	section.	What	questions?	
	

o Part	six:	Saving	commands	for	later	(15	minutes	+	10	minutes)	
o Now	the	final	section.	We	are	going	to	look	at	how	to	save	a	group	of	commands	into	a	

shell	script		-	which	is	a	small	programme	-	so	they	can	be	run	again	later	using	a	single	
command,	or	shared	with	other	people	for	them	to	use.	I	mentioned	at	the	start	
reproducibility,	having	your	analysis	contained	within	a	shell	script	is	one	way	to	ensure	
reproducible	research.		

	

$ pwd $ we want to be in the molecules directory

$ cd ../molecules $ go back into data shell then into molecules directory

$ nano middle.sh

	
o we	have	created	the	file	middle.sh	the	sh	prefix	tells	computer	it	is	a	bash	shell	script.	

Head –n 15 octane.pdb | tail –n 5

o This	selects	lines	11-15	of	the	file	octane.pdb	

$ ls

$ bash middle.sh

o Output	is	the	same	as	if	we	ran	the	command	directly.	

$ nano middle.sh

head –n 15 $1 | tail –n 5

o $1	is	a	special	variable	which	stands	for	the	first	argument	on	the	command	line.		

$ bash middle.sh octane.pdb

o The	same	result.	Can	do	a	different	file	now	

$ bash middle.sh pentane.pdb

o Lines	11	to	15	of	pentane	file.	What	about	if	we	want	to	decide	the	part	of	the	file	we	
want	to	print	out?	

$ nano middle.sh

head –n $2 $1 | tail –n $3 # first arg filename and arguments 2 and 3 tell me the lines

$ nano middle.sh pentane.pdb 20 5 # will extract lines 16 to 20 of pentane

o If	somebody	else	uses	this	programme	it	might	not	be	obvious	what	it	does	so	we	should	
add	comments	

$ nano sorted.sh

select lines from a middle of a file

Usage: bash middle.sh filename end_line num_lines

o Here	we	are	processing	one	file	at	a	time,	but	what	if	we	wanted	to	process	many?	For	
example,	to	sort	our	.pdb	files	by	length	we	would	use		

$ wc –l *.pdb | sort -n

o But	it	would	only	ever	sort	.pdb	in	current	directory.	A	more	flexible	script	would	be	

$ nano sorted.sh

Sort filenames by their length

Usage: bash sorted.sh one_or_more_filenames

wc –l $@ | sort –n

$ bash sorted.sh .pdb ../creatures/.dat

o What	questions	do	you	have?	
o Put	up	“find	the	Longest	File	with	a	given	extension”	
o Something	that’s	not	discussed	in	this	workshop	but	that	I	find	useful	for	my	work	is	

cron	jobs.	These	are	shell	scripts	you	set	to	execute	at	a	particular	time	at	a	particular	
frequency.	For	instance,	I	made	a	shell	script	that	pulls	data	from	the	supercomputers	I	
use	onto	my	local	computer.	The	data	files	are	large	and	can	take	a	while	to	transfer,	but	
I	like	having	them	ready	for	the	start	of	the	working	day.	Using	cron	allows	me	to	set	this	
script	to	run	automatically	every	night	at	midnight	so	the	files	are	waiting	for	me	in	the	
morning.		
	

END	PPT()							(10	minutes)	

